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ABSTRACT: Shorelines are valuable assets of coastal areas that possess unique features. A huge user community 

is associated with the shorelines, which may be affected by both natural and human-induced factors. Monitoring of 

such areas is crucial for environmental protection, sustainable development and planning. Shoreline extraction is a 

fundamental step to determine their dynamics that is crucial for conservation of various natural habitats. The recent 

developments in Unmanned Aerial Vehicle (UAV) systems have made it possible to acquire high-resolution images 

at low cost, which can be exploited for shoreline mapping. This study aims to investigate the efficiency of Support 

Vector Machines (SVM) and Random Forest (RF) classifiers to obtain accurate and reliable water body and land 

classes from a very high-resolution digital orthophoto achieved using UAV-images. In the study, a 3.3 km shoreline 

located on the Black Sea coastline was selected as the study area. The digital orthophoto was generated using 

commercial software based on the SfM method with 1.96 cm ground sample distance.  The SVM and RF methods 

were used to achieve land, water body and wave classes to generate the shoreline of the study area. The same training 

data were used for both the SVM and RF methods. Rapid illumination changes during flights caused unbalanced 

color on the entire image. Considering this effect, nine patches were created from the orthophoto image. Each patch 

was handled as an individual image and training samples had to be selected for each class from each patch.  

 

The shorelines have been generated from binary water body and land classes. Accuracy ssessment was performed by 

comparing results with Global Navigation Satellite System (GNSS) measurements. The average errors were 

calculated as 0.935 m and 0.939 m for the SVM and RF methods, respectively. The differences of 71.86% and 

71.61% are in the 0–1 m interval for SVM and RF, respectively.  

 

Although the SVM and RF methods have been used in various studies for image classification purposes, they have 

not been utilized for shoreline extraction. This study shows that these two machine-learning methods also provide 

remarkable results for this purpose. The proposed framework can be used to create an essential data source for many 

coastal-related studies such as monitoring, determining temporal changes and modelling sediment transport.  

 

This study has been supported by TUBITAK (The Scientific and Technological Research Council of Turkey) with 

project number 115Y718. 

 

1. INTRODUCTION 

 

Accurate and high-resolution data for monitoring and defining coastal changes are vital for coastal management. 

Even though there are many conventional techniques used for data collection, recently UAVs and photogrammetric 

evaluation of the obtained images have become very popular among coastal researchers, administrators and decision 

makers. The advantages of Structure from Motion (SfM) photogrammetry and the increasing capacity of computer 

systems have opened new perspectives for the generation of three-dimensional point cloud and digital orthophotos 

(Clapuyt et al., 2016). Accordingly, UAVs have become an essential tool for coastal monitoring in local areas due to 

their cost-effectiveness and ease of use (Clark, 2017). Therefore, many researchers have focused on the use of UAVs 

in various coastal-related studies.  

 

Oleire-Oltmanns (2012) used UAVs for erosion monitoring of a coastal area from generated orthophotos and a digital 

elevation model (DEM) using stereoscopic digitizing and DEM analysis. Flener et al. (2013) used mobile LiDAR, 
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UAV photography and optical bathymetric modelling to map river channels. Mancini et al. (2013) used UAV for 

reconstruction of coastal environments. They validated UAV-SfM and Terrestrial Laser Scanning (TLS) results with 

GNSS measurements. Casella et al. (2014) determined beach topography using UAV-derived orthophotos and DEM 

with commercial geographical information system (GIS) software. Miřijovský et al. (2015) used a UAV system to 

monitor changes at the Morava River near Litovel. They determined the changes by historical maps and orthophoto 

images generated from UAV images and compared transversal profiles. Lim et al. (2015) exploited UAV to measure 

the effects of organic carbon bearing at coastal dune cliffs. They used UAV survey differences, TLS and pseudo 

three-dimensional ground-penetrating radar (GPR). Čermáková et al. (2016) utilized UAV for detection of changes 

to shorelines. The shorelines were manually digitized from orthophoto images created by the SfM method using 

UAV images. Kalke and Loewen’s (2018) study determined the ice conditions of the North Saskatchewan River and 

the Peace River using UAV and bridge-mounted game camera images. They used the SVM method to obtain ice 

surface and water classes from UAV images. Bayram et al. (2017) applied an object-based fuzzy segmentation 

method to extract shoreline from UAV-derived orthophoto images. Scarelli et al. (2017) used UAVs to define 

seasonal changes to the dunes and beach on the Ravenna coast, Italy, by employing a surface comparison based 

method. Rusnák et al. (2018) also used UAV technology for river landscape mapping. They utilized supervised 

maximum likelihood to obtain water area, bar surface, vegetation woody debris and bare surface classes from digital 

orthophotos. Talavera et al. (2018) detected morphodynamic changes at Camposoto beach (SW Spain) by the DEM 

of Difference method from UAV-derived orthophotos. Noleta et al. (2018) presented a framework for monitoring 

coastal dune development using a multispectral UAV system based on the k-means clustering method. Milas et al. 

(2018) compared maximum likelihood and SVM classifiers to create land cover/classes from UAV-derived 

orthophoto images from the Old Woman Creek National Estuarine Research Reserve in Ohio, USA. Guillot et al. 

(2018) proposed a method to compute the volume of a coastal dune from UAV images using an adapted version of 

the “cut and fill” method. Xia et al. (2018) proposed a method for mapping wetland inundation. They combined UAV 

and Landsat-8 Operational Land Imager (OLI) data. To create a UAV land cover map, they used an object-based 

image classification method. They used linear spectral unmixing, artificial neural networks and regression tree 

methods to create a subpixel inundation map. Mallast and Siebert (2019) investigated submarine groundwater 

discharge by UAV-based thermal infrared measurements. Nagarajan et al. (2019) used a UAV system to determine 

the shoreline retreat at the Jupiter Inlet Lighthouse ONA caused by Hurricane Irma. They manually digitized 

shorelines from pre- and post-hurricane orthomosaic images. Spatial change detection was determined by transect-

based analysis.  

 

Water body segmentation issues are a primary step in shoreline extraction. Coastal image segmentation is of vital 

importance in extracting shorelines. Various pixel- and object-based image segmentation methods from aerial 

orthophoto and satellite imageries have been proposed. Geostatistical methods, spatial attraction models, Artificial 

Neural Networks (ANN), Wavelet Transform, Genetic Algorithms, Markov Random Field and RF Mean-Shift 

integrated fuzzy clustering methods can be given as some examples (Demir et al., 2017, 2019; Liu et al., 2016). More 

information can be found in Zaitoun and Aqel (2015).  

 

The objective of this study is to test two well-known machine learning algorithms (SVM and RF) for extraction of 

shorelines from high-resolution digital orthophotos obtained from UAV-derived images. The impression obtained 

from the literature review is that these methods were not previously employed for shoreline extraction by using high-

resolution data; thus this study aims to eliminate this gap in the literature. The results were then compared with GNSS 

measurement to evaluate performance. In this study, we propose a UAV-based framework by exploiting two machine 

learning methods for shoreline extraction, which has indispensable importance for detecting temporal change, coastal 

preservation and rapid and cost-effective monitoring of erosion and natural hazard effects, focusing on coastal areas. 

 

2. STUDY AREA 

 
The selected study area comprises the 3.3-km shoreline of Istanbul-Terkos Lake located on the Black Sea coastline 

between the Terkos Lake Dam Basin (built in 1883) and the Karaburun-Ormanlı region. Erosion in the region causes 

significant dune loss and damage (Figure 1). Natural and anthropogenic effects are the main threats of erosion. For 

example, sand mining is one the main reason of erosion that also causes depletion of resources, deterioration of 
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coastal structures and damages fish nests. 

 

 
Figure 1 Study area 

 

3. MATERIALS AND METHODS 

 
This study consists of three main steps: orthophoto generation, SVM and RF implementation, and accuracy 

assessment. The flowchart of the study is given in Figure 2. Digital orthophotos are the building blocks of the 

proposed framework. First of all, UAV images were captured by the Multirotor G4 Eagle V2 UAV system with a 

Sony Alpha 7R camera (36.4 MP 35mm Full-Frame Exmor® CMOS Sensor, Sony SEL 35mm f/2.8 ZA Carl Zeiss 

Lens) on 20 September 2017. The flight height was 70 m and endlap and sidelap overlaps were 80% and 70%, 

respectively. The study area was covered with two columns and the total number of captured images was 372. Since 

the precision of the inertial measurement unit (IMU) and GPS systems was low, 25 ground control points were 

measured using the real-time kinematic (RTK) GNSS method as well as the reference shoreline. 

 

 
Figure 2 Flowchart of the study 

3.1. Digital orthophoto generation 
 

3D point cloud and digital orthophotos of the study area were created by commercial Pix4d software (Pix4d, 2017), 

which is based on the SfM technique. Although this method was developed in 1979 (Ullman, 1979), due to rapid 

developments in computers/workstations and camera systems, SfM photogrammetry became an indispensable tool 
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for creating 3D point cloud and digital orthophotos from UAV images (Gomez et al., 2015). SfM photogrammetry 

has been implemented in many different studies. The details of the SfM algorithm can be found in Murtiyoso and 

Pierre (2017) and Dellaert et al. (2000).  

 

3.2. Machine learning based classification 

 
In this study, two different machine learning algorithms have been utilized for shoreline extraction. Due to their 

proven image classification performance, both the SVM and RF methods were chosen to create water body and land 

classes from digital orthophotos.  

 

3.3. Support Vector Machines 

 
SVM is a machine-learning based method developed by Vapnik (1995). The method is based on statistical learning 

and structural risk minimization from training samples. Training samples are used to construct decision functions 

which are called support vectors. The hyperplane is defined by using support vectors. The optimum hyper plane is 

defined by decision function (Vapnik, 1999). 

 

The support vector machines have had a significant impact on classification of complex patterns. SVMs have been 

widely used in various applications due to their effectiveness even with a small sample size for training (Gu et al., 

2016). The objective in such a case is to find an optimal hyperplane between the two classes such that it maximizes 

the margin of separation between them. According to Haykin (2009), the details of the method are given as follows: 

 

Consider a binary classification problem with two linearly separable classes. Let {𝑋𝑖  , 𝑌𝑖} i=1
N  represent training 

samples, where N is the number of training examples and Yi ={-1 , +1} are target values of respective classes. We 

can find an optimal hyperplane that maximizes the distance between two classes which can be represented as in 

equation (1): 

 

𝑊𝑇𝑋 + 𝑏 = 0  (1) 

 
Here X is the input vector, W is the weight vector and b is bias, Yi=+1 represents the positive class and Yi =-1 

represents the negative class. In order to find the optimal hyperplane, the parameters W and b should be estimated in 

such a way that they satisfy equations (2) and (3): 

 

WT X𝑖 + b ≥ +1             for Yi =+1 (2) 

WT x𝑖 + b ≤ −1             for Yi = -1 (3) 

 

Geometrically, the distance between the closest data point and the hyperplane is called the margin. The margin 

between the two classes can then be obtained as in (4): 

 

Margin =  (
2

||w||
)  (4) 

 

Hence, to maximize the margin of separation between the two classes, the factor 
2

||W||
 needs to be maximized. For 

mathematical convenience it is sometimes rewritten as 
1

2
 ||𝑤|| 2. To find an optimal hyperplane, the Euclidean norm 

of the weight vector needs to be minimized.  

 

The solution to the optimization problem can be obtained by converting the constrained problem into a non-

constrained problem by applying Lagrange multipliers: 

 

L(w, x, α) =  
1

2
wTw −  ∑ αi

N
i=1 {yi(wTxi + b)−1}  (5) 

 

where the variables 𝛼𝑖 are called Lagrange multipliers and N is the number of training examples that corresponds to 

non-zero Lagrange multipliers called support vectors. Equation (5) needs to be minimized for the variables 𝑤 and x:  

 

L(w, x, α) =  ∑ αi − 
1

2

N
i=1  ∑ ∑ αiαjYiYjX

T
iXj

N
j=1

N
i=1   (6) 

 

To get the optimal solution for the dual problem, equation (6) needs to be maximized. For a linearly separable 
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classification problem, there is a global optimal solution under the given constraints. Naturally, not all problems are 

linearly separable and no feasible solution can be obtained as equation (6) cannot be applied directly to such complex 

problems. An alternate solution could be to transform the input data to a higher dimension by applying a kernel 

function. The transformed data are supposed to be linearly separable and the SVM classifier could introduce a 

hyperplane to separate the data. Equation (6) can be rewritten with a kernel function as equations (7) and (8): 

 

L(α) =  ∑ αi −  
1

2

N
i=1  ∑ ∑ αiαjyiyjK(xi, xj)

N
j=1

N
i=1   (7) 

where K(xi, xj) =  ϕ(xi)ϕ(xj) (8) 

The 𝐾 is called the kernel function. A number of options are available for kernel selection. However, for the purpose 

of this study the radial basis function (RBF) kernel is used as it has been successfully used in a number of 

classification tasks (Ghamisi et al., 2017). RBF can be expressed mathematically as: 

 

K(x, x′) = exp (
||x−x′|| 2

2σ2 )  (9) 

 

3.4. Random Forest 
 

RF is an ensemble classifier that combines a number of individual tree predictors to form a powerful classification 

model. It is a useful method as significant improvements can be obtained in the classification accuracy by letting the 

individual trees vote for the most popular class. The generalization error of an RF classifier depends on the strength 

of the individual trees in the forest (Breiman, 2001). 

 

RFs are trained to obtain an optimal number of trees. Usually two-thirds of the training samples are used to train the 

trees, while the remainder are used for cross-validation to estimate the performance of the RF model (Belgiu & 

Drăguţ, 2016). The user needs to define the number of decision trees (N) to be constructed. RF randomly grows the 

forest up to N with maximum variance and low bias. The final decision about a test sample is taken by averaging the 

resulting probabilities of individual trees. This means that the test data are evaluated by each tree in the ensemble and 

its membership is decided based on the maximum voting of the trees for a particular class. 

 

A bootstrap sampling method is used for random selection. Tree development from selected attributes is done 

according to the CART algorithm. The CART algorithm uses the Gini index for best attribute selection (Breiman, 

2001). The Gini index is a confusion-based method that calculates the differences between the probability 

distributions of the target attribute values. The Gini index is calculated for data set D (Han et al., 2011):  

 

𝐺𝑖𝑛𝑖(𝐷) = 1 − ∑ 𝑝𝑖
2𝑛

𝑖=1   (10) 

 

pi is the probability of the ith class in D. The Gini index is based on a binary split for each attribute. In order to 

determine the best binary division A, all possible subsets are examined. For the attribute A, the D data set is divided 

into two subgroups as D1 and D2 and the Gini index is calculated according to equation (11): 

 

𝐺𝑖𝑛𝑖(𝐷) = |
𝐷1

𝐷
| 𝐺𝑖𝑛𝑖(𝐷1) + |

𝐷2

𝐷
| 𝐺𝑖𝑛𝑖(𝐷2)  (11) 

 

Possible binary splits of each attribute are considered. The point which gives the minimum Gini index is selected as 

the split point of that attribute.  

 

The subset that provides the lowest Gini A (D) value is selected as the binary subset. This process is applied for each 

attribute. The class homogeneity can be measured by the Gini index. 

 

According to Belgiu and Drăguţ (2016), the computational complexity of the RF for model construction can be 

predicted as follows: 

 

Time Complexity= T√(MxNxlog(N))  (12) 

 

where T is the number of random trees in RF, M represents the number of variables used in the split and N is the 

number of training examples. 

 

RF classifier construction requires two parameters: the number of decision trees (N) and the number of variables 

used to split data (M). First, bootstrap samples are created from two-thirds of the training data set. The remaining 

one-third of the training set, called out-of-bag (OOB) data, is used to test for errors. The trees are developed without 
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pruning from each bootstrap sample. In each node, M variables are randomly selected among all variables and the 

best branch is determined between these variables. Generally, N has less impact on the classification accuracy of the 

classifier. Since increasing the value of N does not overfit the RF classifier, it can be as large as possible. The M is 

usually determined by taking the square root of the number of input variables (Gislason et al., 2006). Increasing the 

value of M may increase the computational time of the RF classifier as it has to compute the information using all 

the variables to split data. Also making the M equal to the number of features can reduce the performance as it will 

result in highly correlated trees. Therefore, a subset of the features k<M is selected to split the data (Jamil, 2018).  

 

In this study, the number of trees and the random variable have been selected empirically.  

 

4. RESULTS AND DISCUSSION 
 

The digital orthophoto was generated using commercial software based on the SfM method with 1.96 cm ground 

sample distance. The adjustment results are given in Table 1. 

 

Table 1 Adjustment results 

 X  Y Z 

Mean (cm) 0.17 0.27 1.84 

Sigma (cm) 1.85 2.00 7.77 

RMS Error (cm) 1.86 2.02 7.98 

 

The SVM and RF methods were used to achieve land, water body and wave classes to generate the shoreline of the 

study area. The same training data were used for both the SVM and RF methods. Rapid illumination changes during 

flights caused unbalanced colour on the entire image. Considering this effect, nine patches were created from the 

orthophoto image. Each patch was handled as an individual image and training samples had to be selected for each 

class from each patch. The generated digital orthophoto and a sample of colour differences between two patches are 

displayed in Figure 3. The total number of pixels for each patch and the patch- based total number of training pixels 

for each class are given in Table 2.  

 

 
Figure 3 Generated digital orthophoto 

 

Table 2 Measured training samples in each patch of orthophoto image 

Patch 

No 
Total number of pixels 

The number of training pixels 

Land Water body Wave 
No 

Data 
Total 

1 226306820 11873 3313 12126 141 27453 

2 224087300 13386 4815 6335 335 24871 

3 301193935 4095 1617 6256 4440 16408 

4 307558350 6643 7223 4816 2962 21644 

5 306947815 5880 18888 8653 2320 35741 

6 199635900 11146 30184 7284 1031 49645 

7 311057916 15909 17731 5290 9753 48683 

8 312706899 11153 18077 4964 1092 35286 

9 149083272 18561 21081 9305 1737 50684 
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The kernel type, gamma and penalty parameters for SVM were Radial Basis Function, 0.250 and 100, respectively. 

The number of trees and random variable were set as 50 and 2 for the RF method.  

 

The water body and wave classes merged as water body and another class as land to create a binary image. Two-step 

noise removal was employed after the creation of binary water body and land classes. In the first step, the largest 

white pixel blob in the binary image was automatically selected and the white blobs that were smaller than the largest 

blob are set as black. In the second step, the gap-filling process (Soille, 1999) was performed for cleaning the small 

black pixels within the white pixel groups. 

 
The final binary results by exploiting SVM and RF are given in Figure 4a) and b). The generated shorelines are given 

in Figure 4c) and d).  

      
             a) Result of binary image by SVM method                b) Result of binary image by RF method                      

      
c)  Obtained shoreline by SVM method                         d) Obtained shoreline by RF method 

Figure 4 Obtained shorelines by SVM and RF methods 

 

The DSAS tool was utilized for accuracy assessment (Thieler et al., 2009). For this purpose, the GNSS measurements 

were taken as reference data and compared with obtained shorelines from both the SVM and RF methods. This study 

employed the Net Shoreline Movement (NSM) of the DSAS, which measures perpendicular distances between 

reference and source shorelines using transects. The length of transects was selected as 100 m in 1 m intervals.  

 

The calculated mean and root mean square errors of the perpendicular distances between the reference and the derived 

shorelines for both the SVM and RF methods are shown in Table 3. As can be seen in Table 3, similar results have 

been created from both methods.  

 
Table 3 Accuracy assessment results 

Method Average Error (m) RMS Error 

(m) 

SVM 0.935 1.708 

RF 0.939 1.727 

 
The classified differences and resulted ratios are given in Figure 6. The differences of 71.86% and 71.61% are in the 

0–1 m interval for SVM and RF, respectively. According to Figure 7, the performances of both methods are almost 

identical. The general structure of the graphics is also quite similar. Since flight permission was valid only for 20 

September 2017, the UAV flight had to be carried out in the wavy season. According to the European Centre for 

Medium-Range Weather Forecasts (ECMWF) ERA-Interim database (ECMWF, 2019), the wind speed and direction 

for the study area on the flight date were 9.403114 (m/s) and SE, respectively. The GNSS measurements were 

completed in six hours, which caused a time difference with the flights.  

 
The results indicate that seasonal and timewise planning of flights plays a key role for end product quality. For 

example, according to the ECMWF data, the calmest season for our study area is in the middle of October due to 
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active south winds (ECMWF, 2019). However, it was not possible to perform new flights at this time due to the 

bureaucratic flight permission process. In this study, the tide effects have not been considered, since we did not aim 

at temporal change detection.  

 

We planned to collect training samples from one patch and implement the SVM and RF methods on the other patches. 

Due to unbalanced colour effects in the created digital orthophoto, a patch-wise training sample collection strategy 

was applied. The number of selected training samples for each class was around 0.001%.  

 

Consequently, it has been proved that the proposed framework is able to create satisfactory, accurate shorelines in 

our study area. The obtained results show that mean shoreline extraction accuracy of both methods is around 1 m. 

This indicates that the shorelines can be extracted in a 1 m buffer by using our proposed framework even in the wavy 

season.  

 

5. CONCLUSIONS 

 
The UAV can be regarded as promising and reliable technology for coastal-related studies. In this study, the SVM 

and RF methods were tested and the results show that these methods are capable of being used for shoreline extraction 

and can be implemented on a UAV-derived digital orthophoto. Our results indicate that UAV-based monitoring of 

coastal areas has undeniable potential due to its high accuracy, mobility and cost-effectiveness. The resolution of 

mounted IMU and GPS systems was not sufficient to obtain exterior orientation parameters of images; therefore, in 

this study, additional ground control point measurements were required. However, the IMU and GPS precision of 

new-generation UAV systems in the market are sufficient for these kinds of tasks. 

 

In general, UAVs deserve to be taken into account for shoreline extraction studies due to the advantages that have 

been observed in this study. Another important factor is that the results have been obtained from an RGB camera. If 

the developments of UAV cameras are taken into consideration, the use of multispectral cameras, which include near 

infrared band, may increase the accuracy of shoreline extraction. 

 

Although the SVM and RF methods have been used in various studies for image classification purposes, they have 

not been utilized for shoreline extraction. This study shows that these two machine-learning methods also provide 

remarkable results for this purpose. The proposed framework can be used to create an essential data source for many 

coastal-related studies such as monitoring, determining temporal changes and modelling sediment transport. 
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