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ABSTRACT: Nitrogen dioxide (NO2) is a kind of highly reactive gas and secondary pollutant 

mainly from burning fossil fuels, which were predominant species in vehicle exhaust. Since traffic 

volume density is heavy and large number of temples and restaurants were densely distributed in 

Taiwan. The high concentration of NO2 may cause adverse effects on respiratory system. To 

estimate NO2 concentration more accurately, this study aimed to utilize a neural network-based 

land use regression model to assess the spatial-temporal variability. Daily average NO2 data were 

collected from 70 fixed air quality monitoring stations in Taiwan main island which were 

established by Taiwan Environment Protective Administration. Totally, around 0.41 million 

observations were collected for our analysis. Several datasets were collected for obtaining spatial 

predictor variables, including EPA environmental resources dataset, meteorological dataset, land-

use inventory, landmark dataset, digital road network map, DTM, MODIS NDVI dataset, and 

thermal power plant distribution dataset. To establish the integrated approach, conventional land-

use regression (LUR) was first used to identify the important predictors variables. Then a deep 

neural network (DNN) algorithm was applied to fit the prediction model. 10-fold cross validation 

and external data verification methods were used to further confirm the robustness of model 

performance. The results showed that, the developed conventional LUR model captured 60% of 

NO2 variation. Of the 11 variables selected by the stepwise variable selection procedure, PM10, 

SO2, O3 explained 18%, 7% and 5% NO2 variation, respectively. After integrating DNN algorithm 

with conventional LUR method, the model explanatory power was increased to 85%, with a 25% 

improved in model performance. Consistent findings were obtained from the 10-fold cross 

validation, while the cross-validated R2 was increased from 61% to 83%, and root-mean-square 

error (RMSE) was decreased from 6.56 ppb to 4.34 ppb. This study demonstrates the value of 

incorporating the conventional LUR model and DNN algorithm in estimating spatial-temporal 

variability of NO2 exposure. 
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1. Introduction 

Nitrogen dioxide (NO2) is a kind of highly reactive gas and secondary pollutant mainly 

from burning fossil fuels, which were predominant species in vehicle exhaust (Brunekreef and 

Holgate 2002; Kampa and Castanas 2008). The high concentration of NO2 may cause adverse 

health effects on respiratory system and lung disease on a global scale (Ierodiakonou et al. 

2016; Wu et al. 2016). 

For the purpose of controlling exposure to air pollution, previous studies had investigated 

about intra-urban variability in exposure to NO2, among these studies, a few fixed monitoring 

stations were used to obtain air pollution concentration as an indicator to personal exposure 

(Ding et al. 2017; Liu et al. 2018; Zhang et al. 2019), but this method can only obtain risk 

value represented for an entire region which is not generally feasible for large scale health 

studies (Adams and Kanaroglou 2016). Hence, take spatial-temporal effects on air pollution 

levels into account, spatial interpolation and land-use regression based on geographic 

information system (GIS) were widely used as intra-urban exposure assessment methods in 

Asia or European (Beelen et al. 2013; Chan et al. 2009; Eeftens et al. 2012; Young et al. 2016). 

Spatial interpolation is a commonly used method for capturing air pollution level based on a 

limited number of monitoring sites, considering the distance between different emission points 

and using spatial statistical method to estimate the variation of air pollution on the ground. 

Without an information about local emission sources and land use patterns, the estimated air 

pollution concentrations may lead to exposure misclassification, resulting in over- or 

underestimate on health risk. Residents can only make less informed decisions in daily 

activities without getting correct health risk information. In the field of urban health and 

epidemiology studies, LUR combines a set of geographic sources and monitoring network as 

independent variables to build up multiple linear regression to estimate air pollution levels in 

entire study area (Achakulwisut et al. 2019; Sbihi et al. 2016). LUR has been proved having 

a prominent role for characterizing spatial relationships between local emissions and intra-

urban air pollution variations (Michanowicz et al. 2016; Wu et al. 2018). As artificial neural 

network algorithm has been applied to capture non-linear relationships which present in the 

data by training machine learning models. This technique can predict air pollution 

concentration by training a group of input data, hidden layers and nodes to obtain the similar 

predictions as observations (Adams and Kanaroglou 2016; Liu et al. 2015).  

To estimate NO2 concentration more accurately, this study aimed to utilize a neural 

network-based land use regression model to assess the spatial-temporal variability. 

Conventional LUR approach will be used to select independent predictors variables for deep 

neural network developing. This integrated method was expected to have a better performance 

in NO2 estimating compared with conventional LUR approach. 

 

 

2. Materials and Method 
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2.1. Study area 

Taiwan is located at the southeast of China, the geographical area of Taiwan amounts 

to 36,193 km2. It comprises 14 counties and 368 townships with a total population of 

23,476,640. There are about 21 million registered motor vehicles (including both 

motorcycles and cars) for a vehicle density of 92.9 per hundred people (MOTC, 2019). 

Traffic density and degrees of urbanization were in relation with intra-urban air pollution 

exposures (Rijnders et al. 2001). Moreover, culture-specific emission sources such as 

incense burning in temples and Chinese restaurants with gas cooking may emit diverse air 

pollutants (Lee and Wang 2004; Yu et al. 2015). Since traffic volume density is heavy and 

large number of temples and restaurants were densely distributed in Taiwan. The high level 

of NO2 from local emission sources may lead to adverse effects to environment and human 

health. 

 

2.2. Air pollutant database 

Daily average NO2 data were obtain from 2000-2016 and collected from 70 fixed air 

quality monitoring stations in Taiwan main island which were established by Taiwan 

Environment Protective Administration. The monitoring site types including 54 general 

stations, five traffic stations, four industrial stations, two national park stations, four 

background stations, and one other type stations. General stations are established to 

represent the ambient air condition for general residents (Fig. 1). Totally, around 0.41 million 

observations were collected for model development. Ozone, sulfur dioxide and PM10 also 

collected from EPA environmental resources were used as predictors variables. 

 

 
Figure 1. Monitoring stations and land-use database within the study area 
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2.3. Geo-spatial database 

Several databases were collected for obtaining spatial predictor variables, including 

meteorological dataset, land-use inventory, landmark database, digital road network map, 

DTM, MODIS NDVI databases, and thermal power plant distribution dataset. 

Meteorological predictors variables including temperature, relative humidity, wind speed, 

wind direction, precipitation and UV were used as explanatory variables. Land-use 

inventory were used to derive land-use/landcover variables, including residential area, green 

space, water body and so on; temples, Chinese restaurants and manufactories from landmark 

database; road patterns from the digital road network map; and topographic altitudes of EPA 

monitoring sites from the Digital Terrain Model with 20 m × 20 m resolution; Normalized 

Difference Vegetation Index (NDVI) from NASA MODIS NDVI database with 250 m × 

250 m spatial resolution. All of these geo-spatial variables were abstracted from 50 m to 

5000 m circular buffer ranges surrounding each air quality monitoring station to represent 

the neighborhood land-use/landcover allocations. 

 

2.4. NO2 variation prediction using various approaches  

To establish the integrated approach, conventional land-use regression (LUR) was first 

used to identify the important predictors variables. Then a deep neural network (DNN) 

algorithm was applied to fit the prediction model. After both approaches were developed, 

we will make a comparison to verify the difference of model performance between 

conventional and NN-based predictive model.  

In the conventional LUR approach, air pollutant database and geo-spatial databases 

will be selected first, Spearman correlation coefficients were applied to assess the bivariate 

association between NO2 and all the potential predictors. Only correlation coefficient of 

variables with a slope of the pre-specified direction was regard as the start model. The 

supervised stepwise multiple regression procedure was used to select variables with entered 

and removed p value criterion 0.1 and 0.3, respectively. With criterion following the 

previous paper (Beelen et al. 2013), fulfilling the increase in adjusted R2 was more than 1%, 

the coefficient conformed to the predefined direction of effect and direction of effect for 

predictors already in the model did not change. Additionally, to assess the collinearly of 

variables in the developed model, Variance Inflation Factor (VIF) was used. Predictor 

variables with VIF criterion < 3 were included in the final model to develop conventional 

LUR approach. 

Neural networks are excellent mathematical methods in forecasting air pollution 

concentration (Adams and Kanaroglou 2016; Solaiman et al. 2008). In this study, we will 

utilize deep neural network (DNN) algorithm integrated with LUR to generalize the linear 

regression model for estimating daily NO2 concentration. Totally, around 0.41 million 

observations were collected for developing DNN model. For model establishing, around 

80% of the data were for model training and 20% for model testing which were applied 
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following all fitting processes. During processing the DNN algorithm, 3 hidden layers were 

used. The weights in a neural network model, which map the data to the hidden layer neurons, 

are partially analogous to the coefficients in a regression model. Learning rate formula of 

the model was LearnRate_value * 1 /( 1 + decay_value * epoch_value). Epoch value of 

model development was set for 1000, during each epoch descending gradient method was 

used for minimizing the error. To optimize the model performance, package ‘Adam’ was 

used for optimizing the model and the loss function package ‘mean_absolute_error’ was 

used for identifying the mean absolute error (MAE) between model predictions and 

observations within the model. 

After both conventional and NN-based LUR approaches has developed, R2 and root-

mean-square error (RMSE) were used to determine the model predictive abilities and the 

residuals between predictions and observations. Based on these two parameters, this study 

compared conventional LUR approach with NN-based LUR model. In addition, 10-fold 

cross validation method was further used to confirm the reliability and robustness of model 

performance. Land use/landcover were extracted by ArcGIS 10.5. Abovementioned 

approaches were analyzed using SPSS 22.0 and R 3.5.2.  

 

3. Results and Discussions 

3.1. Descriptive statistics of measured NO2 concentrations 

NO2 concentration yearly average shows a decreasing trend during the entire study 

period. Fig.2 shows that general stations, traffic stations, industrial stations, national park 

stations, background stations, and other type stations had different NO2 levels. Traffic station 

had the highest value of NO2 concentration (29.20 ± 12.01 ppb), national park station had 

the lowest (3.42 ± 2.39 ppb), and other station types had similar level of NO2 among the 

study period. Comparing with Taiwan EPA’s air quality standards of NO2 (50 ppb) and WHO 

ambient air quality standard of NO2 (40 μg/m3), the measured NO2 level of the traffic station 

was under the two official criterions.  

 
Figure 2. NO2 concentration within different air monitoring site types 
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3.2. Comparison of conventional LUR model and NN-based LUR 

Table1 lists the coefficient of predictors variables selected in the conventional LUR and 

NN-based LUR approach. R2, adjusted R2, RMSE were used to present model performance. 

The higher the R2 and adjusted R2 indicate the better model prediction ability, and the lower 

the value of RMSE indicates the residuals comes smaller. Results showed that 11 variables 

were selected by the stepwise variable selection procedure, PM10, SO2, O3 explained 18%, 

7% and 5% NO2 variation within the model. R2, adjusted R2 and RMSE of conventional 

LUR approach were 0.60, 0.60 and 6.56, respectively. And R2 and RMSE of NN-based LUR 

approach was 0.85 and 4.13. As for checking model robustness, 10-fold cross validation was 

utilized within both approaches and captured about 61% and 83% NO2 variation. This 

verifies the reliability and robustness of the constructed model. Further comparing the 

results between the two model development approaches, the NN-based LUR model 

consistently performed better than the conventional LUR model in all cases, again showing 

the improvement by integrating neural network algorithm method into LUR modelling 

procedures. 

 

Table 1. Coefficient estimates of the developed LUR model, and the comparison of model 

performance using different approaches 

 Coefficient (95% 

CI) 

Conventional 

LUR approach 

NN-based LUR 

approach 

Intercept 17.735 (17.6 - 17.87) R2: 0.60 

Adjusted R2: 0.60 

RMSE: 6.56 

10-fold CV R2: 

0.61 

 

R2: 0.85 

RMSE: 4.13 

10-fold CV R2: 

0.83 

 

SO2 0.855 (0.845 - 0.865) 

O3 -0.138 (-0.14 - -0.136) 

PM10 0.13 (0.129 - 0.131) 

Temple150m 0.217 (0.212 - 0.222) 

Wind speed -1.562 (-1.581 - -

1.544) 

Temperature -0.396 (-0.4 - -0.392) 

Manufactory5000m 0.015 (0.015 - 0.015) 

Funeral 

industry4000m 0.037 (0.036 - 0.038) 

Industrial and 

commercial 

residential area4000m 

0.108 (0.107 - 0.109) 

Majorroad50m 301.188 (296.6 - 

305.775) 

Distance to the 

nearest bus station 

-0.00012  

(-0.00012 - -0.00011) 

6



Several improvement ways were proposed and used in previous studies. For example, 

regression kriging (RK) was applied to assess the spatial distributions of NO2 and O3 in Japan 

(Araki et al. 2015). In their approach, the residuals of the developed land-use regression model 

were interpolated using ordinary kriging and used to adjust the pollutant estimations obtained 

from LUR models. In the case the distribution of residuals cannot be explained by the spatial 

autocorrelation models of kriging, the applicability of RK might be limited (Hengl et al. 2007). 

The proposed DNN/LUR approach did not face the same challenges since DNN provided an 

efficient methodology to improve the prediction performance for a non-linear distribution data 

characteristic. The other studies have considered remote sensing estimates such as aerosol optical 

depth (AOD) and AOD based PM2.5 estimates as the variable of LUR model (Beckerman et al. 

2013; Hystad et al. 2011; Yang et al. 2017). In Taiwan, it is not easy to acquire clear satellite 

images because of the cloudy and rainy weather conditions especially in summer (Wu et al. 2013). 

Most of the western part of the island are missing observations on the AOD image. Weather 

conditions limits the applicability of satellite estimates on exposure assessment not only in Taiwan, 

but also in the other tropical/subtropical regions with similar weather characteristics. 

The burning of joss paper and incense in temples and funeral industry are activities particular 

to Asian communities. (Lung et al. 2014) evaluated the influence of various spot pollution sources 

on exposure levels within communities, such as temples. They found that PM levels at locations 

near spot pollution sources could be increased by 3.5 to 4.9 times compared with those at 

background locations. (Lung and Kao. 2003) assessed the PM2.5 exposures of temple worshippers 

in Taiwan. Their results found that the geometric mean of personal exposure was 444 μg/m3. The 

later was approximately 4 to 6 times that of roadside concentrations. In our study, both temples 

and funeral industry were statistically associated with NO2 concentrations and included in the 

developed model, our study provides insight into NO2 exposure predictions in studies of Asian 

community. 

 

4. Conclusion 

This study demonstrates the value of incorporating the conventional LUR model and 

DNN algorithm in estimating spatial-temporal variability of NO2 exposure. Model validation 

shows the robustness of DNN approach in capturing daily concentration. This method can be 

used to predict air pollution levels within-city in different areas. 
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