
Hyperspectral Image Classification using Spectral LSTM Networks 

Simranjit Singh (1), Singara Singh Kasana (1) 

1 Computer Science and Engineering Department, Thapar Institute of Engineering and 

Technology, Patiala, Punjab, India 

Email: simranjit_singh@thapar.edu; singara@thapar.edu; 

 

Abstract 
 

The Classification of Hyperspectral images is a famous domain in the remote sensing community. 

Hyperspectral images constitute large number of bands that contain the captured reflectance 

spectra values. Most of the existing classification techniques are based on spectral-spatial 

frameworks and do not take advantage of the fact that the spectral information contained in the 

hyperspectral images are sequential in nature. The spectral dimensions of hyperspectral are 

already more significant, and adding the spatial data to it further leads to increase in dimensions. 

With the recent advances in deep learning, its use is ubiquitous in almost every other domain for 

big data analytics. The conventional machine learning algorithms cannot able to form deep neural 

connections as compared to deep learning models. So, in this paper, a novel framework is 

proposed, which is hybrid of Long Short-Term Memory Networks, a deep learning framework 

and Principal Component Analysis that give more significance to spectral dimensions of 

hyperspectral images. Principal Component Analysis is used to reduce the high dimensional 

image data, which is then passed to Long Short-Term Memory Networks, to classify the images. 

LSTM is a recurrent neural network which is predominantly performing better on sequential 

problems. Experiments are performed on standard dataset of Kennedy Space Center and Pavia 

University. The proposed framework efficiently classify the hyperspectral images and its 

effectiveness is shown by comparing it with existing state-of-the-art classifiers. 
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1. Introduction 
 

Hyperspectral Images (HSIs) are high dimensional images which are acquired by using satellite 

sensors. The most popular sensors are NASA’s Airborne Visible / Infrared Imaging Spectrometer, 

Hyperion and ISRO’s Bhuvan. These acquired images contain a ton of information which can be 

used for various useful purposes like mineral mapping, soil mapping, etc. Due to higher 

dimensions, the existing models are not able to classify the HSIs efficiently (Melgani et al., 2002).  

Most of the existing classification models are based on the spectral-spatial frameworks (Yue et 

al., 2014, Chen et al., 2014, Wang et al. 2019, Zhou et al. 2018). The addition of spatial 

information to the spectral data increases the classification accuracy of prediction models as 

shown by various works. But they also add more dimensions to the hyperspectral images, which 

takes more processing time. So, many researchers tried to use multiple dimensionality reduction 

algorithms like Principal Component Analysis (PCA), Locality Preserving Projections (LPP) 

(Singh et al., 2018), etc. Out of which PCA is the most widely used in the field of hyperspectral 

classification.  

With the advent of deep learning, its use is in every domain for data analytics. As HSIs are 

sequential images, many works used LSTMs for classification of HSI (Mou et al., 2017, Liu et al., 

2017, Seydgar et al., 2019, Hang et al., 2019). These works also added spatial dimensions. The 
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data obtained after the PCA remains sequential as it preserves the global information of the 

original dataset.  

 

1.1 Motivations of the Proposed work 
 

1. Most of the existing state-of-the-art models are based on spectral-spatial frameworks. The 

added spatial features add more dimensions to hyperspectral images. 

2. The current classification models do not take advantage of the sequential nature of 

hyperspectral images. 

 

1.2 Contributions of the Proposed Work 
 

1. Only spectral features are used to build a spectral based classification framework. These 

spectral features are further reduced with the help of Principal Component Analysis. 

2. Long Short-Term Memory networks are used to take advantage of the sequential nature of 

the hyperspectral images. 

 

2. Background of the Proposed Work 
 

2.1  Principal Component Analysis 
 

Principal Component Analysis is one of the most popular dimensionality reduction algorithms. 

As hyperspectral images have high dimensions, it is mostly used to reduce the high dimensional 

data for efficient processing. The PCA algorithm is based on eigenvalues, eigenvectors, and 

covariance matrix. The Principal Components are shown in Figure 1. 

 
Figure 1: Principal Components 

 

2.2 Long Short-Term Memory Networks 
 

Long Short-Term Memory Networks (LSTM) is a type of recurrent neural network which 

overcomes the short comings of the previous built RNNs (Hochreiter et al., 1997). The structure 

of the LSTM is shown in Figure 2.  

The forget gate remember only the important part of the information. It takes into account the 

input 𝑥𝑖𝑡  and previous cell state 𝐶𝑡−1  and outputs the degree of information which is to be 

remembered. 𝑓𝑡 can be defined as: 

 

                                                              𝑓𝑡 = 𝜎(𝑊𝑓 . [𝐻𝑖𝑡−1, 𝑥𝑖𝑡] + 𝑏𝑓)            (1) 
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where 𝐻𝑖𝑡−1 is the output from the previous state. 

 
Figure 2: Structure of LSTM 

Now, after this, it is important to determine the new information to store it in the cell which makes 

the new cell state. It is performed in two main steps:  

1. A sigmoid layer also known as” input gate layer” determines which values will be selected 

for updation. 

 

                                                            𝑙𝑡 = 𝜎(𝑊𝑙. [𝐻𝑖𝑡−1, 𝑥𝑖𝑡 + 𝑏𝑖])                                                   (2) 

 

2. A tanh layer forms a vector of new candidates values �̂� that is selected to add in further states. 

      �̂�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶[𝐻𝑖𝑡−1, 𝑥𝑖𝑡] + 𝑏𝐶)         (3) 

 

Now the new information should be added to old cell state 𝐶𝑡−1 to form new cell state 𝐶𝑡  by 

multiplying 𝐶𝑡−1 with 𝑓𝑡 and adding 𝑙𝑡 × �̂� : 

 

 𝐶𝑡 = 𝑓𝑡 ∘ 𝐶𝑡−1 + 𝑙𝑡 ∘ �̂�𝑡         (4) 

 

where ∘ is element wise multiplication (Hadamard product) 

Finally, the output is achieved by the final sigmoid and tanh functions: 

 

                                                              𝑂𝑖𝑡 = 𝜎(𝑊𝑜𝑢𝑡𝑝𝑢𝑡[ℎ𝑖𝑡−1, 𝑥𝑖𝑡] + 𝑏𝑜𝑢𝑡𝑝𝑢𝑡                              (5) 

 

                                                                            ℎ𝑖𝑡 = 𝑂𝑡 × 𝑡𝑎𝑛ℎ(𝐶𝑡)          (6) 

 

3. Proposed Framework 
 

In this section, PCA-LSTM based framework is proposed, as shown in Figure 3. Firstly, the 

Hyperspectral images are given as input to PCA, which reduces the excess spectral dimensions. 

This framework is based on reduced spectral features. As most of the current work follows the 

spectral-spatial frameworks, the HSI dimensions are further increased by adding spatial features. 

The main aim of the PCA is to preserve the spatial information and maximize the variance in the 

resultant dataset. The PCA components are chosen in such a way that the resultant components 

explain the 100% variance of the original input dataset. Then, the reduced dataset is divided into 

training, validation, and testing data. 
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Figure 3: Proposed Framework 

 

Afterwards, the training data is passed to LSTM, which performs better on sequential data for 

forming meaningful connections based on the sequence. LSTM remembers the essence of the 

information by remembering a part of essential sequences with the help of forget gate. Then, a 

trained classifier is obtained, which can classify the hyperspectral images. Afterwards, the testing 

data is passed to the trained classifier, which predicts the individual class of the input. In the end, 

the predicted classes are noted and compared with the ground truth to evaluate the performance 

of the model. 

4. Experimental Results and Analysis 
 

Experiments are performed on real hyperspectral images namely—Kennedy Space Center and 

Pavia University. The image dataset description is given below: 

 

4.1 Kennedy Space Center Dataset 
 

Kennedy Space Center (KSC) dataset, as shown in Figure 4, is captured by NASA’s Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. It contains 224 bands having 10 nm 

width. This dataset is captured from an approximate altitude of 20km. That’s why the resolution 

of the image is very fine. After performing atmospheric correction, 48 bands are removed due to 

noise. It contains a total of 13 classes and the total resolution of the corrected final image is 512× 

614× 176. 

 
Figure 4: Description of KSC (a) Classes (b) Ground Truth (c) Ground Truth overlayed on spectral band 23  
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4.2 Pavia University Dataset 
 

Reflective Optics System Imaging Spectrometer (ROSIS) acquired the hyperspectral image of 

Pavia University, Italy as shown in Figure 5. It is an airborne sensor having a band count of 115. 

It has a total of 9 classes. After atmospheric corrections, the bands are reduced to 103. Total 

resolution of corrected image is 610 × 610 × 103.  

 
Figure 5: Description of KSC (a) Classes (b) Ground Truth (c) spectral band 23 

 

4.3 Experimental Results 
 

Experiments are performed on the platform provided by Google named Colaboratory having a 

powerful GPU. Firstly, the HSIs are passed through PCA to decrease the dimensions. The 

dimensions are kept in such a way that they can explain 100% of the original dataset. Afterwards, 

the lower dimension dataset is divided into training, validation and testing. We used 5% training 

data which is validated by 5% data to avoid overfitting and testing is performed on 100% of the 

data. The training and validation curves are shown in Figure 6, which shows a near-perfect fit.  

 
Figure 6: Training and Validation curves of LSTM in case of (a) KSC (b) Pavia 

 

The training and validation data are passed to LSTMs having ‘Adam’ optimizer. The LSTM can 

easily form a meaningful connection in case of sequential data. After the training process, a trained 

leaner is obtained, which can classify the HSI. To this learner, the remaining 100% data is passed 

for prediction. The predicted values are noted and are compared with ground truth classes for the 

evaluation of the built proposed framework.  
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Table 1- Comparison of the Proposed framework with State-of-the-art models on the basis of Overall Accuracy. 

Sr. No Dataset Proposed (%) SAE (%) EN (%) KNN (%) SVM (%) 

1 KSC 90.00 65.11 66.24 67.70 78.14 

2 Pavia 90.00 62.11 59.73 61.19 63.89 

 

The proposed framework is compared with state-of-the-art classification models named Stacked 

Autoencoders-Deep Networks (SAE) (Singh et al., 2019), Ensemble-Boosted (EN), K-Nearest 

Neighbor (KNN) and Support Vector Machines (SVM). The proposed framework outperformed 

all the models on the basis of overall accuracy (OA), as shown in Table 1. The individual class 

Precision, Recall and F1-score are shown in Table 2. The proposed framework is based on LSTM 

which can remember important information with the help of forget gate which provides an 

additional capability to the proposed framework, which is not present in any other existing models. 

Classification maps are shown in Figures 7 and 8.  

Table 2- Individual Class Precision, Recall and F1-Score of the Proposed Framework. 

 KSC Pavia University 

Classes Precision Recall f1-score Precision Recall f1-score 

1 0.96 0.95 0.95 0.90 0.90 0.90 

2 0.86 0.90 0.88 0.94 0.96 0.95 

3 0.89 0.95 0.92 0.71 0.73 0.72 

4 0.76 0.63 0.69 0.87 0.89 0.88 

5 0.61 0.75 0.67 0.99 0.99 0.99 

6 0.72 0.63 0.68 0.91 0.83 0.87 

7 0.76 0.90 0.82 0.81 0.70 0.75 

8 0.94 0.90 0.92 0.80 0.80 0.80 

9 0.95 0.97 0.96 0.98 1.00 0.99 

10 0.96 0.96 0.96 -- -- -- 

11 0.99 0.99 0.99 -- -- -- 

12 0.92 0.95 0.93 -- -- -- 

13 1.00 0.98 0.99 -- -- -- 

  Overall Accuracy 90% Overall Accuracy 90% 

 

 
Figure 7: Classification map (KSC) of the (a) Proposed Framework (b) SAE (c) EN (d) KNN (e) SVM 
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Figure 8: Classification map (Pavia) of the (a) Proposed Framework (b) SAE (c) EN (d) KNN (e) SVM 

 

5. Conclusions 
 

In this work, a PCA-LSTM based hyperspectral classification framework is proposed. PCA is one 

of the most efficient dimensionality reduction algorithms, which is used to preserve global 

information. The reduced dataset is passed to LSTM, a deep learning framework which is mostly 

used for sequential problems. It quickly formed meaningful neural connection with only 5% 

training. The proposed framework outperformed the existing models. It improves the overall 

accuracy by 138.23% and 150.68% in case of KSC and Pavia University dataset respectively.  
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