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ABSTRACT: Because of the remarkable technological development of sensors and algorithms for point cloud data 

acquisition and registration, collecting point cloud data over large spaces has become more accessible than ever 

before. The result of this process is the generation of massive point cloud data, which can exceed the capacity of a 

single computer. Efficient visualization of this data is an important issue that needs to be addressed. Using big data 

platforms, such as Hadoop, could bring benefits in processing big point cloud data. However, due to some barriers, 

there have not been many studies conducted on this platform to solve problems of big point cloud data, so far. In this 

study, the potential and challenges of processing big point cloud data using Hadoop will be presented. Thereafter, a 

comprehensive solution will be proposed to overcome the limitations, which can result in the first Hadoop-based 

framework for fully processing massive point cloud data. 

 

1. INTRODUCTION 

 

The development of science and technology has provided powerful devices for collecting point cloud data. For 

example, with a Leica HDS 6100 system, point cloud data can be collected up to 500000+ points per second (Leica 

HDS 6100 brochure). This data collection results in the generation of big point cloud data up GB or even TB in size, 

posing great challenges for a single computer. First, in a commodity computer, the storage capacity is only 1~2 TB, 

therefore, it is hard to keep several big point cloud data, as mentioned. At the same time, the process of backing up 

these massive data also has required a lot of effort. Second, in many cases, processing these big data is impossible 

due to memory overflow issues. In conventional solutions, data need to be split manually into sub-datasets that can 

be processed within the capacity of a single computer. At that time, it does not only require human resource to handle 

the sub-datasets, but also in the effort to summarize the results or implement post-processing step to achieve the 

desired result. Therefore, automatic parallel processing has been required. So far, two kinds of parallel processing 

have been used, including taking the advantages of either supercomputers with multi-cores or commodity computer 

clusters. While the first solution saves development time, it has also required a higher cost of investment making use 

of the second solution more common. As one of the pioneering studies in this area, (Han et al. 2009) used a personal 

computer cluster and a virtual grid for the efficient processing of an enormous amount of ALS (Airborne Laser 

Scanning) data. In this study, Message Passing Interface was used for data transferring between worker nodes. 

However, this solution has no ability to fault tolerance, nor is it a data locality solution. In other words, data need to 

be moved frequently between the worker nodes during the processing. In a conventional approach, the study by (van 

Oosterom et al. 2015) used a database cluster to optimize the storage as well as the fast archiving results in Range 

Query and kNN operations. In this solution, instead of storing point cloud in flat table, a big point cloud was split 

into blocks in binary format before storing in the tables. The queries are then accelerated by indexing strategies such 

as using Morton code (Martinez-Rubi et al. 2015). Three Database Management Systems including PostgreSQL 

(https://www.postgresql.org), Oracle (https://www.oracle.com), and MonetDB (https://www.monetdb.org) have been 

tested in this study, and the results showed that Oracle proved to be a very effective environment both w.r.t data 

loading and querying. The advantage of this solution is stable, time-saving in the development. However, it still 

remains expensive, lacking the ability to fault tolerance and the expansion of computation up to model-level such as 

RANSAC (Li et al. 2017).  

In the era of big data, the advent of big data platforms such as Apache Hadoop (https://hadoop.apache.org) or 

Apache Spark (https://spark.apache.org) have prompted a series of studies to address the problems of processing 

massive point cloud data. In this series, to overcome the limitation of storage the study by (Růžička et al. 2017) 

researchers used Hadoop as the optimal storage component, which is demonstrated in the scalability when more 

computers are added to the cluster, and the fault tolerance when one of the computers fails. However, these studies 

only exploited the storage capability of Hadoop without taking the power of parallel computing of this platform. 

Before, point cloud data could be processed by using tools or libraries such as LASTool 

(https://rapidlasso.com/lastools) or PCL (http://pointclouds.org). They have been combined with Hadoop in the 

studies by (Li, Hodgson, and Li 2018) and (Wang et al. 2017) respectively. However, these frameworks simply call 

functions of the tool or library as mentioned above in each worker node instead of using native Map-Reduce diagram 

of Hadoop. In other words, the process of configuration, computation distribution, and result collections are not 

seamless. Recently, the study by (Kissling et al. 2017) has proposed eEcoLIDAR as an ambitious proposal for 
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handling massive Lidar data by using Hadoop. However, the main result of this project has not been published. In 

fact, the development of Map-Reduce applications for the purpose of processing spatial data, in general, and point 

cloud data, in particular, has required a lot of effort from developers, because Hadoop itself does not support spatial 

data. Therefore, a large number of studies has taken advantages of a third platform running on top of Hadoop such as 

HBase (https://HBase.apache.org) to save the cost of development (Boehm and Liu 2015; Vo et al. 2018). From 

another view, when the power of processing data in memory is considered, (Pajić, Govedarica, and Amović 2018) 

introduced a point cloud data management model based on Apache Spark. In this solution, HBase is used as storage 

component, while the applications are developed based on Resilient Distributed Dataset mechanism of Spark. The 

performance of this solution has been compared with PostgreSQL which has shown outstanding advantages in 

obtaining data. However, the testing operations such as Range Query or kNN are still limited and need to be expanded 

for showing the potential use of this model in processing massive point cloud data. At the same time, HBase is also 

not an optimal storage solution because it often happens bottleneck issue when a large amount of data is written down 

HBase simultaneously (Azqueta-Alzúaz et al. 2017). Moreover, as most of the previous frameworks, they completely 

lack the ability to visualize massive point cloud data, which is one of crucial factors to obtain useful information from 

point cloud data. In this study, a comprehensive solution is introduced to overcome the existing limitations. Thereby, 

it creates foundations to develop a complete framework for processing massive point cloud data.  

 

2. CURRENT CHALLENGES AND ANALYSIS 

 

2.1. Challenges in the storage 

 

If Hadoop allows the storage can be extended along with ability to fault tolerance through the block replication 

and distributed storage mechanisms, it also bring difficulties to users by these mechanisms. First, a big file will be 

split into blocks physically in Hadoop; therefore, only the first block keeps header information of this file, if this is a 

structured data file. It means that many parts of this file cannot be read locally at Map or Reduce tasks because of 

missing the header information. Meanwhile, point cloud can be stored in many kinds of structured data files, such as 

LAS (Isenburg 2013) or E57 (http://www.libe57.org). So far, these big data files need to be split into smaller files 

within one block (128MB) before being imported into Hadoop (Li, Hodgson, and Li 2018). In this way, developers 

need to use a customized FileInputFormat of Hadoop for reading the data. In another way, data can be stored in a flat 

file such as *CSV or *.PTS. These file formats take more disk space for storage; however, they can be read by Hadoop 

without any deep customization. In fact, almost all input file formats have required creating index structures, and this 

process is more complicated than creating an index on a single computer, because instead of reading data directly 

from the file, Hadoop needs to refer to the master node to get the address of blocks of data file. Therefore, creating 

index on Hadoop has required both on the master node and on the worker nodes. 

 

2.2. Challenges in the visualization 

 

The major challenge in visualizing massive point cloud on Hadoop is storing and indexing the multi-resolution 

point cloud data in the HDFS (Hadoop Distributed File System). Hadoop is designed to process big data sets instead 

of processing many small files. Meanwhile, a big point cloud data can generate a multi-resolution point cloud data 

up to millions of data units. The issues of storing small files in Hadoop could be expressed as follows. First, a "block" 

is the minimum data unit of Hadoop and every data block (including a number of replication for fault tolerance) 

requires its presence at the master node. Therefore, just one file, only 1KB in size, also requires 3 instances (number 

of replication) of its presence at the master nodes. Meanwhile, a bulky map of blocks at the master node could 

significantly reduce the performance of accessing data. Second, the process of creating and closing the file reader in 

HDFS takes a lot of time. Due to these reasons, previous studies had to move the multi-resolution data outside of the 

distributed storage model to reduce the time of accessing data (Eldawy, Mokbel, and Jonathan 2016; Yu, Zhang, and 

Sarwat 2018). To overcome these limitations, the number of presences of blocks at master nodes has to be minimum. 

The techniques of prefetching, indexing, and caching data have to be fully employed.  

 

2.3. Challenges in data processing 

 

Processing point cloud data often requires data to be processed at the model-level, in which a sequence of single 

operations is used consecutively to obtain the desired results. In these models, it is essential to keep the intermediate 

results in memory to reduce the time of reading and writing data on disk. However, keeping data in memory also 

requires organized tuning of parameters to distribute computer resources to the worker nodes. Specifically, in 

Hadoop, creating more JVMs (Java Virtual Machines) means that more blocks can be processed at the same time. 

However, these JVMs will also receive fewer resources, which may result in the incomplete work, because the amount 

of data generated exceeds the capacity provided. Besides, it is also important to keep the workload balanced between 

these JVMs, since the final result only be collected after all worker nodes complete their tasks. 

2



 

3. PROPOSED SOLUTION 

 

3.1. Indexing Methods 

 

Indexing methods are developed for the acceleration of processing data. They are categorized into three groups, 

including spatial partitioning, global indexing, and local indexing. These methods are summarized in Figure 1. 

 

 
Figure 1. Proposed Model for Indexing Point Cloud Data on Hadoop 

 

Spatial partitioning: This is the very first step in a Map-Reduce application, however, it has played an important 

role in balancing the workload between the Reduce tasks. Spatial partitioning is a rule or set of rules defined by 

developers to ensure that objects will be grouped in the same category if they are close to each other and the number 

of objects between parts is approximately equal. In processing big spatial data, spatial partitioning is usually 

conducted on sample data at the master node (Eldawy, Alarabi, and Mokbel 2015). In this article, the STR-based 

method (Leutenegger, Lopez, and Edgington 1997) is proposed for general spatial partitioning, since this method 

ensures the balancing number of points between parts, and it creates a number of parts which is close to the number 

of physical blocks. Octree-based method is proposed for spatial partitioning of creating multi-resolution point cloud 

because this structure is appropriate for the visualization (Scheiblauer 2014; Schütz 2016). In some cases, using only 

one structure for the spatial partitioning is not enough because it does not ensure minimum number of parts generated, 

thus, a hybrid structure should be developed (Yang and Huang 2014).  

 

Global indexing: When a file is processed, Hadoop reads all blocks of this file as default. However, Hadoop reads 

only the blocks that are directly involved in the computation, if a global index is created. Global index manages 

blocks of data generated by the spatial partitioning step. It works based on two components, including spatial map 

and data map. Spatial map supports locating exactly which regions of data will be processed, while data map supports 

reading data within these regions. Spatial partitioning can be implemented in different methods, therefore, global 

index needs to be adaptive to the geometric structures generated by the spatial partitioning step. Among many kinds 

of tree-based structures, Rtree is proposed for the global index, since this structure can handle overlap issues and 

discard empty space (Balasubramanian and Sugumaran 2012).  

 

Local indexing: This step organizes data in each data block of Hadoop. Local index can be Grid File, Rtree, Kdtree, 

Octree or others. In some cases, the global and local index are merged in a single index (Whitman et al. 2014) or 

either of them is not created (Yu, Wu, and Sarwat 2015). Among the tree-based structures for indexing point cloud 

data, the study by (Han et al. 2011; Han 2018; Elseberg, Borrmann, and Nüchter 2013) showed the superiority of 

Octree compared to the others. In addition to using tree-based structure, point cloud data could be indexed by using 

space-filling curve (Guan, van Oosterom, and Cheng 2018). In this way, multi-dimensional data are transformed into 

one-dimensional data which can be indexed by using Btree structure. The local index should be kept in memory to 

speed up the performance (Kyzirakos, Alvanaki, and Kersten 2016). However, it also be written down HDFS to reuse 

in other processes (Eldawy and Mokbel 2015). 
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3.2. Visualizing Massive Point Cloud Data  

 

Visualization is an important factor to achieve insight on point cloud data. In the visualization of big point cloud, 

which exceeds the capacity of GPU (Graphics Processing Unit), the multi-resolution point cloud should be used along 

with out-of-core methods to obtain information at only core regions. Between WebGL 

(https://www.khronos.org/webgl) and OpenGL (https://www.opengl.org) for the rendering, WebGL is proposed since 

Hadoop undertook most heavy tasks. Hence, the web-based application is only used for showing the multi-resolution 

data. Besides, a web-based solution can share the results among users without moving the data. Based on Potree 

(Schütz 2016), which is one of the state-of-the-art studies in this research topic, a model of visualizing massive point 

cloud data on Hadoop is given in Figure 2. The main difference of this model compared to Potree is in storing the 

multi-resolution data. Because storing and accessing many small files in HDFS are not optimal, it is necessary to 

combine them into larger files with the ability to random access, like the mechanism of NoSQL, or directly use a 

NoSQL data warehouse, such as HBase, MongoDB (Abramova and Bernardino 2013) or Cassandra (Dede et al. 

2013), for storing the multi-resolution point cloud data. 

 
Figure 2. Proposed Model for Visualizing Point Cloud Data on Hadoop 

 

3.3. Processing Point Cloud Data 

 

Based on the analysis in Section 2, the overall architecture of our framework is introduced in Figure 3. This 

framework consists of three layers: (1) Storage layer, (2) Operation layer, and (3) Interactive layer.  

 
Figure 3. Proposed Architecture for Visualizing Point Cloud Data on Hadoop 

 

The storage layer is optimized by the proposed indexing methods to accelerate the Map-Reduce applications. This 

layer plays an important role in the operation of the entire system, since data could be accessed randomly instead of 

sequentially. The operation layer is equipped with Map-Reduce applications to take full advantage of parallel 

computing in Hadoop. Some of group applications in this proposed framework are also introduced at the operation 

layer in Figure 3. To enrich the applications in this layer, developers can use an API (Application Programming 

Interface) to save the development time. The interactive layer, which is also a web-based visualization, will be 
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equipped with high-level user interfaces to support casual users to approach the system without requiring deeply 

related knowledge of big data technology.  

 

4. CONCLUSION 

 

In this paper, many of the studies related to processing massive point cloud data on Hadoop are reviewed to clarify 

the potential and challenges in this research topic. Firstly, most studies have not fully taken advantages of Map-

Reduce diagram in parallel processing because customizing the native structure of Hadoop for processing spatial data 

has required expert knowledge. Secondly, no research has been presented to solve thoroughly the problem of 

visualizing big point cloud data on Hadoop. This can be explained by the obstacles in accessing small files in Hadoop 

system. Thirdly, the previous studies hardly provided the solutions for extending existing results. Because they only 

focus on developing end-user solutions, without taking into account the provision of API to support other developers. 

Based on the analysis, the solutions have been introduced to overcome the existing limitations and challenges, and 

open clear direction for this research in the future. The efficiency of these solutions will be further analyzed in our 

next studies. 
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