
MASSIVE POINT CLOUD PROCESSING ON HADOOP:

CHALLENGES AND PROPOSED SOLUTION

Minh Hieu Nguyen (1), Sanghyun Yoon (1), Sangyoon Park (1), and Joon Heo* (1)

1 Yonsei University, 50 Yonsei-ro, Seodamun-gu, Seoul, 03722, Korea;

Email: {nguyenminhhieu, yoonssa, parksangyoon}@yonsei.ac.kr, jheo@yonsei.ac.kr

KEYWORDS: Massive point cloud processing; Hadoop-based framework; Map-Reduce application;

ABSTRACT: Because of the remarkable technological development of sensors and algorithms for point cloud data

acquisition and registration, collecting point cloud data over large spaces has become more accessible than ever

before. The result of this process is the generation of massive point cloud data, which can exceed the capacity of a

single computer. Efficient visualization of this data is an important issue that needs to be addressed. Using big data

platforms, such as Hadoop, could bring benefits in processing big point cloud data. However, due to some barriers,

there have not been many studies conducted on this platform to solve problems of big point cloud data, so far. In this

study, the potential and challenges of processing big point cloud data using Hadoop will be presented. Thereafter, a

comprehensive solution will be proposed to overcome the limitations, which can result in the first Hadoop-based

framework for fully processing massive point cloud data.

1. INTRODUCTION

The development of science and technology has provided powerful devices for collecting point cloud data. For

example, with a Leica HDS 6100 system, point cloud data can be collected up to 500000+ points per second (Leica

HDS 6100 brochure). This data collection results in the generation of big point cloud data up GB or even TB in size,

posing great challenges for a single computer. First, in a commodity computer, the storage capacity is only 1~2 TB,

therefore, it is hard to keep several big point cloud data, as mentioned. At the same time, the process of backing up

these massive data also has required a lot of effort. Second, in many cases, processing these big data is impossible

due to memory overflow issues. In conventional solutions, data need to be split manually into sub-datasets that can

be processed within the capacity of a single computer. At that time, it does not only require human resource to handle

the sub-datasets, but also in the effort to summarize the results or implement post-processing step to achieve the

desired result. Therefore, automatic parallel processing has been required. So far, two kinds of parallel processing

have been used, including taking the advantages of either supercomputers with multi-cores or commodity computer

clusters. While the first solution saves development time, it has also required a higher cost of investment making use

of the second solution more common. As one of the pioneering studies in this area, (Han et al. 2009) used a personal

computer cluster and a virtual grid for the efficient processing of an enormous amount of ALS (Airborne Laser

Scanning) data. In this study, Message Passing Interface was used for data transferring between worker nodes.

However, this solution has no ability to fault tolerance, nor is it a data locality solution. In other words, data need to

be moved frequently between the worker nodes during the processing. In a conventional approach, the study by (van

Oosterom et al. 2015) used a database cluster to optimize the storage as well as the fast archiving results in Range

Query and kNN operations. In this solution, instead of storing point cloud in flat table, a big point cloud was split

into blocks in binary format before storing in the tables. The queries are then accelerated by indexing strategies such

as using Morton code (Martinez-Rubi et al. 2015). Three Database Management Systems including PostgreSQL

(https://www.postgresql.org), Oracle (https://www.oracle.com), and MonetDB (https://www.monetdb.org) have been

tested in this study, and the results showed that Oracle proved to be a very effective environment both w.r.t data

loading and querying. The advantage of this solution is stable, time-saving in the development. However, it still

remains expensive, lacking the ability to fault tolerance and the expansion of computation up to model-level such as

RANSAC (Li et al. 2017).

In the era of big data, the advent of big data platforms such as Apache Hadoop (https://hadoop.apache.org) or

Apache Spark (https://spark.apache.org) have prompted a series of studies to address the problems of processing

massive point cloud data. In this series, to overcome the limitation of storage the study by (Růžička et al. 2017)

researchers used Hadoop as the optimal storage component, which is demonstrated in the scalability when more

computers are added to the cluster, and the fault tolerance when one of the computers fails. However, these studies

only exploited the storage capability of Hadoop without taking the power of parallel computing of this platform.

Before, point cloud data could be processed by using tools or libraries such as LASTool

(https://rapidlasso.com/lastools) or PCL (http://pointclouds.org). They have been combined with Hadoop in the

studies by (Li, Hodgson, and Li 2018) and (Wang et al. 2017) respectively. However, these frameworks simply call

functions of the tool or library as mentioned above in each worker node instead of using native Map-Reduce diagram

of Hadoop. In other words, the process of configuration, computation distribution, and result collections are not

seamless. Recently, the study by (Kissling et al. 2017) has proposed eEcoLIDAR as an ambitious proposal for

The 40th Asian Conference on Remote Sensing (ACRS 2019)
October 14-18, 2019 / Daejeon Convention Center(DCC), Daejeon, Korea WeC4-4

1

about:blank
about:blank
about:blank
mailto:jheo@yonsei.ac.kr

handling massive Lidar data by using Hadoop. However, the main result of this project has not been published. In

fact, the development of Map-Reduce applications for the purpose of processing spatial data, in general, and point

cloud data, in particular, has required a lot of effort from developers, because Hadoop itself does not support spatial

data. Therefore, a large number of studies has taken advantages of a third platform running on top of Hadoop such as

HBase (https://HBase.apache.org) to save the cost of development (Boehm and Liu 2015; Vo et al. 2018). From

another view, when the power of processing data in memory is considered, (Pajić, Govedarica, and Amović 2018)

introduced a point cloud data management model based on Apache Spark. In this solution, HBase is used as storage

component, while the applications are developed based on Resilient Distributed Dataset mechanism of Spark. The

performance of this solution has been compared with PostgreSQL which has shown outstanding advantages in

obtaining data. However, the testing operations such as Range Query or kNN are still limited and need to be expanded

for showing the potential use of this model in processing massive point cloud data. At the same time, HBase is also

not an optimal storage solution because it often happens bottleneck issue when a large amount of data is written down

HBase simultaneously (Azqueta-Alzúaz et al. 2017). Moreover, as most of the previous frameworks, they completely

lack the ability to visualize massive point cloud data, which is one of crucial factors to obtain useful information from

point cloud data. In this study, a comprehensive solution is introduced to overcome the existing limitations. Thereby,

it creates foundations to develop a complete framework for processing massive point cloud data.

2. CURRENT CHALLENGES AND ANALYSIS

2.1. Challenges in the storage

If Hadoop allows the storage can be extended along with ability to fault tolerance through the block replication

and distributed storage mechanisms, it also bring difficulties to users by these mechanisms. First, a big file will be

split into blocks physically in Hadoop; therefore, only the first block keeps header information of this file, if this is a

structured data file. It means that many parts of this file cannot be read locally at Map or Reduce tasks because of

missing the header information. Meanwhile, point cloud can be stored in many kinds of structured data files, such as

LAS (Isenburg 2013) or E57 (http://www.libe57.org). So far, these big data files need to be split into smaller files

within one block (128MB) before being imported into Hadoop (Li, Hodgson, and Li 2018). In this way, developers

need to use a customized FileInputFormat of Hadoop for reading the data. In another way, data can be stored in a flat

file such as *CSV or *.PTS. These file formats take more disk space for storage; however, they can be read by Hadoop

without any deep customization. In fact, almost all input file formats have required creating index structures, and this

process is more complicated than creating an index on a single computer, because instead of reading data directly

from the file, Hadoop needs to refer to the master node to get the address of blocks of data file. Therefore, creating

index on Hadoop has required both on the master node and on the worker nodes.

2.2. Challenges in the visualization

The major challenge in visualizing massive point cloud on Hadoop is storing and indexing the multi-resolution

point cloud data in the HDFS (Hadoop Distributed File System). Hadoop is designed to process big data sets instead

of processing many small files. Meanwhile, a big point cloud data can generate a multi-resolution point cloud data

up to millions of data units. The issues of storing small files in Hadoop could be expressed as follows. First, a "block"

is the minimum data unit of Hadoop and every data block (including a number of replication for fault tolerance)

requires its presence at the master node. Therefore, just one file, only 1KB in size, also requires 3 instances (number

of replication) of its presence at the master nodes. Meanwhile, a bulky map of blocks at the master node could

significantly reduce the performance of accessing data. Second, the process of creating and closing the file reader in

HDFS takes a lot of time. Due to these reasons, previous studies had to move the multi-resolution data outside of the

distributed storage model to reduce the time of accessing data (Eldawy, Mokbel, and Jonathan 2016; Yu, Zhang, and

Sarwat 2018). To overcome these limitations, the number of presences of blocks at master nodes has to be minimum.

The techniques of prefetching, indexing, and caching data have to be fully employed.

2.3. Challenges in data processing

Processing point cloud data often requires data to be processed at the model-level, in which a sequence of single

operations is used consecutively to obtain the desired results. In these models, it is essential to keep the intermediate

results in memory to reduce the time of reading and writing data on disk. However, keeping data in memory also

requires organized tuning of parameters to distribute computer resources to the worker nodes. Specifically, in

Hadoop, creating more JVMs (Java Virtual Machines) means that more blocks can be processed at the same time.

However, these JVMs will also receive fewer resources, which may result in the incomplete work, because the amount

of data generated exceeds the capacity provided. Besides, it is also important to keep the workload balanced between

these JVMs, since the final result only be collected after all worker nodes complete their tasks.

2

3. PROPOSED SOLUTION

3.1. Indexing Methods

Indexing methods are developed for the acceleration of processing data. They are categorized into three groups,

including spatial partitioning, global indexing, and local indexing. These methods are summarized in Figure 1.

Figure 1. Proposed Model for Indexing Point Cloud Data on Hadoop

Spatial partitioning: This is the very first step in a Map-Reduce application, however, it has played an important

role in balancing the workload between the Reduce tasks. Spatial partitioning is a rule or set of rules defined by

developers to ensure that objects will be grouped in the same category if they are close to each other and the number

of objects between parts is approximately equal. In processing big spatial data, spatial partitioning is usually

conducted on sample data at the master node (Eldawy, Alarabi, and Mokbel 2015). In this article, the STR-based

method (Leutenegger, Lopez, and Edgington 1997) is proposed for general spatial partitioning, since this method

ensures the balancing number of points between parts, and it creates a number of parts which is close to the number

of physical blocks. Octree-based method is proposed for spatial partitioning of creating multi-resolution point cloud

because this structure is appropriate for the visualization (Scheiblauer 2014; Schütz 2016). In some cases, using only

one structure for the spatial partitioning is not enough because it does not ensure minimum number of parts generated,

thus, a hybrid structure should be developed (Yang and Huang 2014).

Global indexing: When a file is processed, Hadoop reads all blocks of this file as default. However, Hadoop reads

only the blocks that are directly involved in the computation, if a global index is created. Global index manages

blocks of data generated by the spatial partitioning step. It works based on two components, including spatial map

and data map. Spatial map supports locating exactly which regions of data will be processed, while data map supports

reading data within these regions. Spatial partitioning can be implemented in different methods, therefore, global

index needs to be adaptive to the geometric structures generated by the spatial partitioning step. Among many kinds

of tree-based structures, Rtree is proposed for the global index, since this structure can handle overlap issues and

discard empty space (Balasubramanian and Sugumaran 2012).

Local indexing: This step organizes data in each data block of Hadoop. Local index can be Grid File, Rtree, Kdtree,

Octree or others. In some cases, the global and local index are merged in a single index (Whitman et al. 2014) or

either of them is not created (Yu, Wu, and Sarwat 2015). Among the tree-based structures for indexing point cloud

data, the study by (Han et al. 2011; Han 2018; Elseberg, Borrmann, and Nüchter 2013) showed the superiority of

Octree compared to the others. In addition to using tree-based structure, point cloud data could be indexed by using

space-filling curve (Guan, van Oosterom, and Cheng 2018). In this way, multi-dimensional data are transformed into

one-dimensional data which can be indexed by using Btree structure. The local index should be kept in memory to

speed up the performance (Kyzirakos, Alvanaki, and Kersten 2016). However, it also be written down HDFS to reuse

in other processes (Eldawy and Mokbel 2015).

3

3.2. Visualizing Massive Point Cloud Data

Visualization is an important factor to achieve insight on point cloud data. In the visualization of big point cloud,

which exceeds the capacity of GPU (Graphics Processing Unit), the multi-resolution point cloud should be used along

with out-of-core methods to obtain information at only core regions. Between WebGL

(https://www.khronos.org/webgl) and OpenGL (https://www.opengl.org) for the rendering, WebGL is proposed since

Hadoop undertook most heavy tasks. Hence, the web-based application is only used for showing the multi-resolution

data. Besides, a web-based solution can share the results among users without moving the data. Based on Potree

(Schütz 2016), which is one of the state-of-the-art studies in this research topic, a model of visualizing massive point

cloud data on Hadoop is given in Figure 2. The main difference of this model compared to Potree is in storing the

multi-resolution data. Because storing and accessing many small files in HDFS are not optimal, it is necessary to

combine them into larger files with the ability to random access, like the mechanism of NoSQL, or directly use a

NoSQL data warehouse, such as HBase, MongoDB (Abramova and Bernardino 2013) or Cassandra (Dede et al.

2013), for storing the multi-resolution point cloud data.

Figure 2. Proposed Model for Visualizing Point Cloud Data on Hadoop

3.3. Processing Point Cloud Data

Based on the analysis in Section 2, the overall architecture of our framework is introduced in Figure 3. This

framework consists of three layers: (1) Storage layer, (2) Operation layer, and (3) Interactive layer.

Figure 3. Proposed Architecture for Visualizing Point Cloud Data on Hadoop

The storage layer is optimized by the proposed indexing methods to accelerate the Map-Reduce applications. This

layer plays an important role in the operation of the entire system, since data could be accessed randomly instead of

sequentially. The operation layer is equipped with Map-Reduce applications to take full advantage of parallel

computing in Hadoop. Some of group applications in this proposed framework are also introduced at the operation

layer in Figure 3. To enrich the applications in this layer, developers can use an API (Application Programming

Interface) to save the development time. The interactive layer, which is also a web-based visualization, will be

4

equipped with high-level user interfaces to support casual users to approach the system without requiring deeply

related knowledge of big data technology.

4. CONCLUSION

In this paper, many of the studies related to processing massive point cloud data on Hadoop are reviewed to clarify

the potential and challenges in this research topic. Firstly, most studies have not fully taken advantages of Map-

Reduce diagram in parallel processing because customizing the native structure of Hadoop for processing spatial data

has required expert knowledge. Secondly, no research has been presented to solve thoroughly the problem of

visualizing big point cloud data on Hadoop. This can be explained by the obstacles in accessing small files in Hadoop

system. Thirdly, the previous studies hardly provided the solutions for extending existing results. Because they only

focus on developing end-user solutions, without taking into account the provision of API to support other developers.

Based on the analysis, the solutions have been introduced to overcome the existing limitations and challenges, and

open clear direction for this research in the future. The efficiency of these solutions will be further analyzed in our

next studies.

5. ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea

government (Ministry of Science and ICT) (No. 2018R1A2B2009160).

6. REFERENCES

Abramova, Veronika, and Jorge Bernardino. 2013. "NoSQL databases: MongoDB vs cassandra." In Proceedings of the

international C* conference on computer science and software engineering, 14-22. ACM.

Azqueta-Alzúaz, Ainhoa, Marta Patiño-Martinez, Ivan Brondino, and Ricardo Jimenez-Peris. 2017. "Massive data load on

distributed database systems over HBase." In Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing, 776-79. IEEE Press.

Balasubramanian, Lakshmi, and M Sugumaran. 2012. 'A state-of-art in R-tree variants for spatial indexing', International Journal

of Computer Applications, 42: 35-41.

Boehm, J, and K Liu. 2015. 'NoSQL for storage and retrieval of large LiDAR data collections', ISPRS-International Archives of

the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40: 577-82.

Dede, Elif, Bedri Sendir, Pinar Kuzlu, Jessica Hartog, and Madhusudhan Govindaraju. 2013. "An evaluation of cassandra for

hadoop." In 2013 IEEE Sixth International Conference on Cloud Computing, 494-501. IEEE.

Eldawy, Ahmed, Louai Alarabi, and Mohamed F Mokbel. 2015. 'Spatial partitioning techniques in SpatialHadoop', Proceedings

of the VLDB Endowment, 8: 1602-05.

Eldawy, Ahmed, and Mohamed F Mokbel. 2015. "Spatialhadoop: A mapreduce framework for spatial data." In 2015 IEEE 31st

international conference on Data Engineering, 1352-63. IEEE.

Eldawy, Ahmed, Mohamed F Mokbel, and Christopher Jonathan. 2016. "HadoopViz: A MapReduce framework for extensible

visualization of big spatial data." In 2016 IEEE 32nd International Conference on Data Engineering (ICDE), 601-12. IEEE.

Elseberg, Jan, Dorit Borrmann, and Andreas Nüchter. 2013. 'One billion points in the cloud–an octree for efficient processing of

3D laser scans', ISPRS Journal of Photogrammetry and Remote Sensing, 76: 76-88.

Guan, Xuefeng, Peter van Oosterom, and Bo Cheng. 2018. 'A parallel N-dimensional Space-Filling Curve library and its

application in massive point cloud management', ISPRS International Journal of Geo-Information, 7: 327.

Han, Soo-Hee, Seong-Joo Lee, Sang-Pil Kim, Chang-Jae Kim, Joon Heo, and Hee-Bum Lee. 2011. 'A Comparison of 3D R-tree

and octree to index large point clouds from a 3D terrestrial laser scanner', Journal of the Korean Society of Surveying, Geodesy,

Photogrammetry and Cartography, 29: 39-46.

Han, Soo Hee, Joon Heo, Hong Gyoo Sohn, and Kiyun Yu. 2009. 'Parallel processing method for airborne laser scanning data

using a PC cluster and a virtual grid', Sensors, 9: 2555-73.

Han, Soohee. 2018. 'Towards Efficient Implementation of an Octree for a Large 3D Point Cloud', Sensors, 18: 4398.

Isenburg, Martin. 2013. 'LASzip: lossless compression of LiDAR data', Photogrammetric Engineering and Remote Sensing, 79:

209-17.

Kissling, W Daniel, Arie C Seijmonsbergen, Ruud PB Foppen, and Willem Bouten. 2017. 'eEcoLiDAR, eScience infrastructure

for ecological applications of LiDAR point clouds: reconstructing the 3D ecosystem structure for animals at regional to

continental scales'.

Kyzirakos, Kostis, Foteini Alvanaki, and Martin Kersten. 2016. "In memory processing of massive point clouds for multi-core

systems." In Proceedings of the 12th International Workshop on Data Management on New Hardware, 7. ACM.

5

Leutenegger, Scott T, Mario A Lopez, and Jeffrey Edgington. 1997. "STR: A simple and efficient algorithm for R-tree packing."

In Proceedings 13th International Conference on Data Engineering, 497-506. IEEE.

Li, Lin, Fan Yang, Haihong Zhu, Dalin Li, You Li, and Lei Tang. 2017. 'An improved RANSAC for 3D point cloud plane

segmentation based on normal distribution transformation cells', Remote Sensing, 9: 433.

Li, Zhenlong, Michael E Hodgson, and Wenwen Li. 2018. 'A general-purpose framework for parallel processing of large-scale

LiDAR data', International Journal of Digital Earth, 11: 26-47.

Martinez-Rubi, Oscar, Peter Van Oosterom, Romulo Gonçalves, Theo Tijssen, Milena Ivanova, Martin L Kersten, and Foteini

Alvanaki. 2015. 'Benchmarking and improving point cloud data management in MonetDB', SIGSPATIAL Special, 6: 11-18.

Pajić, Vladimir, Miro Govedarica, and Mladen Amović. 2018. 'Model of Point Cloud Data Management System in Big Data

Paradigm', ISPRS International Journal of Geo-Information, 7: 265.

Růžička, Jan, Lukáš Orčík, Kateřina Růžičková, and Juraj Kisztner. 2017. 'Processing LIDAR Data with Apache Hadoop.' in, The

Rise of Big Spatial Data (Springer).

Scheiblauer, Claus. 2014. 'Interactions with gigantic point clouds'.

Schütz, Markus. 2016. 'Potree: Rendering large point clouds in web browsers', Technische Universität Wien, Wiedeń.

van Oosterom, Peter, Oscar Martinez-Rubi, Milena Ivanova, Mike Horhammer, Daniel Geringer, Siva Ravada, Theo Tijssen,

Martin Kodde, and Romulo Gonçalves. 2015. 'Massive point cloud data management: Design, implementation and execution

of a point cloud benchmark', Computers & Graphics, 49: 92-125.

Vo, Anh-Vu, Nikita Konda, Neel Chauhan, Harith Aljumaily, and Debra F Laefer. 2018. "Lessons learned with laser scanning

point cloud management in Hadoop HBase." In Workshop of the European Group for Intelligent Computing in Engineering,

231-53. Springer.

Wang, Chunxiao, Fei Hu, Dexuan Sha, and X Han. 2017. 'Efficient LiDAR point cloud data managing and processing in a hadoop-

based distributed framework', ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4:

121.

Whitman, Randall T, Michael B Park, Sarah M Ambrose, and Erik G Hoel. 2014. "Spatial indexing and analytics on Hadoop." In

Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 73-

82. ACM.

Yang, Jiansi, and Xianfeng Huang. 2014. 'A hybrid spatial index for massive point cloud data management and visualization',

Transactions in GIS, 18: 97-108.

Yu, Jia, Jinxuan Wu, and Mohamed Sarwat. 2015. "Geospark: A cluster computing framework for processing large-scale spatial

data." In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems,

70. ACM.

Yu, Jia, Zongsi Zhang, and Mohamed Sarwat. 2018. "Geosparkviz: a scalable geospatial data visualization framework in the

apache spark ecosystem." In Proceedings of the 30th International Conference on Scientific and Statistical Database

Management, 15. ACM.

6

