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ABSTRACT: Object detection in aerial images is an active yet challenging task in computer 
vision due to crowded small objects, its arbitrary orientations and object scale variations. Dealing 
with various sizes of objects is a common problem in conventional image task. In recent research, 
a data augmentation technique that transforms various sizes of images has been considered to 
regularize the size variations. The aerial image, itself contains GSD (Ground Sample Distance) 
information indicating how much of the actual distance a pixel covers, if the camera altitude and 
angle are known. This allows the various sizes of real objects to be uniformly normalized. In this 
research, GSD normalization, an image augmentation technique that modifies sizes of images to 
satisfy the predefined target GSD value will be introduced to improve the performance measure 
of object detection in aerial images. To validate the proposed method, DOTA (A Large-scale 
Dataset for Object DeTection in Aerial Images) has been utilized with Faster R-CNN as an object 
detector using deep convolutional neural networks. Finally, it is expected that it will be helpful 
to apply the proposed method when there is insufficient number of images at the altitude suitable 
for the target task in remote sensing field. 

 

 

1. INTRODUCTION 

 

Due to the recent rapid development of Convolutional Neural Network (CNN), object detection, 

one of the most challenging tasks in computer vision, has been much matured to be applied in 

various applications such as autonomous vehicles (Zhu et al., 2016), surveillance (Lin et al., 

2015), monitoring (Guirado et al, 2017), etc. Nonetheless, object detection in aerial image is still 

remained as unsatisfactory (Yang et al., 2019) due to the various sizes and aspect ratios of objects 

in aerial images. Xia et al. (2017) indicated several distinct points that explain why an aerial 

object detector performs relatively low accuracy, compared to an object detector based on ground 

images, which are huge object size variance, small object crowdedness, unbalanced instance 

occurrences and arbitrary orientation of objects.  

 

As mentioned earlier, size variance of objects in images deteriorates the performance of aerial 

object detector due to wide range of a corresponding distance and field of view as images are 

captured. Theoretically, size invariance problem can be easily resolved by simply resizing 

images to obtain objects in same scale in respect to photography properties. In the traditional 

ground image dataset, it is challenging to obtain or estimate the camera information out of the 

image, required to compute the optimal object size distribution within the image for 

normalization.  

 

However, in aerial images, it is possible to compute a ground sample distance (GSD) that 

indicates how much a pixel represents the actual distance (Orych, 2015). If the pixel distance of 

The 40th Asian Conference on Remote Sensing (ACRS 2019) 
October 14-18, 2019 / Daejeon Convention Center(DCC), Daejeon, Korea WeC4-2

1



two points in an image and physical distance of the same points in the real world are given, GSD 

can be easily calculated by the equation (1). GSD can be computed with the information of 

shooting altitude and camera’s angle of view rather than measuring the actual distance of two 

points. Using this feature, the size of objects in all images can be uniformly normalized by GSD 

property. As will be discussed in Chapter 3, the performance of an object detection is distinctly 

improved by the proposed GSD normalization technique.  

 

Ground Sample Distance (GSD; m/px) = 
𝐴𝑐𝑡𝑢𝑎𝑙/𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝑇𝑤𝑜 𝑃𝑜𝑖𝑛𝑡𝑠 (𝑚)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑎 𝐼𝑚𝑎𝑔𝑒 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑆𝑎𝑚𝑒 𝑇𝑤𝑜 𝑃𝑜𝑖𝑛𝑡𝑠 (𝑝𝑥)
        (1) 

 

1.1 Previous Works 

 

Object detection has been significantly improved by the advent of deep learning. As having been 

sophisticated, there are mainly two classes of methods for object detection in images, one based 

on sliding windows and the other based on region proposal classification.  

 

To reduce the computation cost of selecting a huge number of regions, Girshick et al. (2013) 

proposed a method to use selective search to extract a relatively small number of regions from 

the image, called region proposals. These regions are generated using the selective search 

algorithm, which generates initial candidate regions and recursively combine similar regions into 

larger ones.  

 

Liu et al. (2016) proposed Single Shot MultiBox Detector (SSD), one single shot detector to 

detect multiple objects within the image, while regional proposal network (RPN) based 

approaches need two stages, one for generating regions proposals, one for detecting the object 

for each proposal. By eliminating the object proposals, SSD requires less computation time 

compared to two-shot RPN-based approaches. 

 

To resolve class imbalance issue that one-stage detectors experienced, Lin et al. (2017) proposed 

a new loss function, called Focal Loss, that dynamically scaled cross entropy loss, where the 

scaling factor decays to zero as confidence in the correct class increases. Apparently, this scaling 

factor automatically down-weight the contribution of easy examples during training and rapidly 

focus the model on hard examples. The proposed loss function was used to substitute heuristics 

or hard example mining techniques, the previous one-stage detectors had, which significantly 

outperforms the existing techniques. This Focal Loss function was validated with a simple one-

stage object detector called RetinaNet. The main characteristics of this detector was use of 

feature pyramid network (FPN) and anchor boxes. 

 

 The most significant and challenging problem for object detection in remote sensing era is the 

various scales and aspect ratios of objects within the image. To resolve this issue, Qiu et al. (2019) 

proposed a new object detection modal, called A2RMNet composed of gate fusion modules, 

refine blocks and region proposal networks. The multi-scale feature gate fusion network 

adaptively aggregates semantic features of different scale features and control feature 

information in different scale by using the learned weight vector. Furthermore, an attention 

network was proposed to select the RoI features of appropriate aspect ratios of objects. 

 

For similar purpose, researches on handling image data have also been populated. Touvron et al. 

(2019) proposed a method to reduce the train-test resolution discrepancy, which allows the 

training and testing data distributions to be matched by rescaling images at both train and test 

time accordingly. 
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Table 1. Descriptive Statistics of Selected Images from DOTA 

Feature Mean Std. Dev. Min Max 

GSD (m) 0.249 0.171 0.092 0.988 

width (px) 2108.92 1553.09 353 13,383 

height (px) 1967.11 1328.24 346 8,115 

Instances / Image 181.85 501.32 1 10,180 

 

 
Table 2. Descriptive Statistics of the Size of Annotated Instances 

* The size of each bounding box was measured by the geometric mean of height and width (in pixel) 

 

While many studies on image characterization have focused on improving performance using 

the latent information contained in the image, our approach is clearer than other approaches in 

that it uses more explicit image information, GSD. The major strength of our method is that it 

can be quantitatively validated through a more adaptive approach that depends on the ambient 

condition when image data is captured and capabilities of a camera. 

 

The rest of this paper is organized as follows: materials and methods used for our research are 

introduced in Chapter 2. The experiments setup and the results are explained and analyzed in 

Chapter 3. The contribution of this paper and future research are described in Chapter 4. 

 

 

2. MATERIAL AND METHODS 

 

2.1 Dataset 

 

A fair number of aerial image datasets for object detection have been released to the public and 

DOTA is one of them. It has been widely used among researchers due to its abundance of size, 

many different classes of objects, and quadrilateral annotation rule unlike simple rectangle 

annotation method of other known public datasets (Xia et al., 2017). Thus, DOTA was 

unquestioningly selected for our research. The recently released DOTA v1.5 dataset is composed 

of 1,869 images with 280,196 annotated instances, increased by 219% compared to its previous 

version (excluding the test images of which the annotations were not provided).  

 

In addition, DOTA differs from other datasets due to wide range of GSD distribution over images. 

In the case of COWC (Mundhenk et al. 2016) published for automobile detection, the data 

consists only of images with a GSD value of 0.15. Thus, it was undeniable to use DOTA to 

thoroughly validate our normalization method using GSD property for aerial images.  

 

Category Count Proportion Mean Std. Dev. Min Max 

Helicopter 691 0.3% 61.2 49.8 22.4 482.8 

Large Vehicle 26,999 10.9% 47.5 26.7 4.6 280.1 

Plane 9,719 3.9% 109.4 91.9 8.5 849.0 

Ship 41,468 16.7% 38.3 30.4 5.2 1281.9 

Small Vehicle 168,983 68.2% 17.7 9.6 2.8 106.3 

Total 247,860 100.0% 28.1 32.0 2.8 1281.9 
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Figure 1. The Size Distribution of Bounding boxes (by Category). The object sizes are measured by the 

geometric mean of height and width.  

 

DOTA provides annotated instances for a total of 16 categories, but analyzed only by extracting 

image information about moving objects that are interested in industries such as surveillance, 

public traffic control, city planning, etc. The moving objects are helicopters, large vehicles, 

planes, ships, and small vehicles. 

 

Among 1,869 images of the annotated DOTA images, our dataset was composed of a total of 

1,363 images which contain the target objects and whose GSD values are lower than 1.0 which 

cannot distinctly express the target objects. Table 1 and 2 illustrate descriptive statistics of 

selected images and annotated instances. As shown in Table 1, there were images of various 

sizes and the average number of instances in one image was 181.85, which confirmed the 

crowdedness of the object throughout the aerial image dataset. Plus, it was observed that more 

than two-thirds of instances were a class of small vehicles. In general, an instance with area of 

less than 32px2 in an image is categorized as small-sized object according to the public open 

dataset, COCO (Lin et al., 2014). In that sense, our selected dataset was composed of crowded 

small-sized instances. Of the total 1,363 images, 272 images (20%) were used as test dataset and 

the remaining 1091 images (80%) were used for training. 

 

 

2.2 Methods 

 

GSD Normalization 

 

GSD normalization is a newly proposed image augmentation technique to change the size of 

images so that the modified image gets the target GSD. The image becomes enlarged when the 

GSD of the original image is larger than the target GSD and vice versa. Interpolation methods 

should be selected to modify the size of images. The interpolation method based on resampling 
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Figure 2. The Structure of Faster R-CNN 

 

using pixel area relation was utilized to decrease the size of images and bicubic interpolation 

was applied for enlarging images on the basis of OpenCV official documentation (OpenCV team, 

2019). 

 

In general, data augmentation in deep learning era feeds the augmented images to the training 

network while training is being conducted. However, image resizing requires longer computation 

time. It is also inefficient to crop the image to meet the desired input size of the network 

throughout the training process. Moreover, random cropping, a common data augmentation 

method, doesn’t fully guarantee the same outcomes due to its randomness. In order to improve 

the efficiency of experiments and obtain reproducible results, the dataset was divided into 

training and test datasets and arranged in a required format in advance.  

 

Figure 1 illustrates the size distribution of bounding boxes grouped by their categories. The sizes 

of normalized bounding boxes are larger than that of non-scaled dataset; most of the images were 

enlarged since the average GSD value of unnormalized data is 0.249. Besides this enlarging 

effect on the size distribution of bounding box become looking more like bell-shape especially 

in small vehicles. 

 

 

Object Detector 
 

In this experiment, Faster R-CNN (Ren et al., 2015) was used to build an object detection model 

for aerial imagery. Figure 2 shows the overall scheme of Faster R-CNN, composed of 3 networks: 

the Backbone Network that extracts feature maps within an image, the Region Proposal Network 

that selects areas where objects are more likely and the Fully Connected Network which finds 

classes of objects and more precise locations of objects based on selected regions.  

 

Even if it is a combination of three independent neural networks, Faster R-CNN is a single and 

unified network model for object detection. Faster R-CNN is a fully differentiated model that is 

fast and utilizes advantages of CNN while previous works in R-CNN are based on the selective 

search to generate region proposals. 
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Table 3. The Number of Images for Training by Treatment 

 Not 

Normalized 

GSD Normalization (target GSD) 

0.1 0.15 0.2 0.3 0.4 

Number 

of Images 
10,846 30,012 19,518 13,919 8,389 5,790 

 

 
Table 4. Average Precision by Category 

Category 
Not 

Normalized 

GSD Normalization (target GSD) 

0.1 0.15 0.2 0.3 0.4 

Helicopter 0.389 0.719 0.630 0.659 0.689 0.580 

Large Vehicle 0.738 0.781 0.763 0.728 0.624 0.513 

Plane 0.928 0.935 0.928 0.938 0.928 0.915 

Ship 0.725 0.927 0.899 0.831 0.619 0.490 

Small Vehicle 0.473 0.771 0.735 0.680 0.332 0.070 

mAP 0.650 0.827 0.791 0.767 0.638 0.514 

 

 

3. Experiments 

 

3.1 Experimental Design  

We trained datasets with target GSD of 0.1, 0.15, 0.2, 0.3, and 0.4, respectively. For comparison, 

the dataset without GSD normalization was also trained by identical Faster R-CNN model. The 

size of the input image in the Faster R-CNN object detector were set to 800 x 800. Object detector 

training and inferencing were conducted with the use of MMDetection: Open MMLab Detection 

Toolbox (Chen et al, 2019), and original config file of Faster R-CNN provided by the toolbox 

was used except the input size of images and total number of epochs (set to 300).  

 

As the target GSD values is decreased, the size of augmented image becomes larger. If the GSD 

of the original image was 0.4, the image is increased by two times horizontally and vertically 

when the target GSD is set to 0.2, and the area is increased by four times in total. As described 

in Section 2.2, the original image is augmented by our GSD normalization method. Then, the 

modified image is cropped using sliding window, allowing 20% overlap for both width and 

height and fit to the desired input size. The number of images for each augmented training dataset 

according to each experimental condition is shown in Table 3. 

 

All experiments were performed on the environments called Brain Cloud, GPU-powered cloud 

computing service developed by Kakaobrain. Each training was conducted on V4.XLARGE 

instance (4 NVIDIA Tesla V100 installed machines with 56-cored CPU and 488 GB RAM). 

 

 

3.2 Result 

Table 3 shows average precision score for each class. The evaluation metric for PASCAL VOC  

(Everingham et al., 2010) was applied. Due to the fact that we use the independently modified  
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Figure 3 Training Time Dependence of the Number of Training Images 

 

training and test datasets, aggregated by the moving window method explained in the earlier 

section, there may little discrepancy between our scores with the official DOTA benchmarks. 

Compared to the result without GSD normalization, our proposed method outperforms in all 

categories.  

 

The GSD value to achieve the most higher AP score was when it was set to 0.1. Its mean average 

precision (mAP) score was 27.2% higher than the result without GSD normalization, and the AP 

score for small vehicles was increased by 63.0%. It was investigated that the overall performance 

was improved with lower GSD values. 

 

Basically, GSD normalization is an augmentation technique based on resizing for both training 

and test images. When target GSD is set to small number, excessive number of images need to 

be generated for training. Figure 3 illustrates that the relationship between training time and the 

number of training images in our experiments. The training process spends a certain amount of 

time to learn the entire images generated by GSD normalization, which indicates that the GSD 

normalization helps the model to learn more data. 
 
However, for certain categories such as plane, GSD value of 0.2 achieved better AP score than 

the score of when GSD value was set to 0.1. It implies that there are certain sets of GSD values 

for each category to attain the most outstanding performance. In other words, the performance 

for an object detector based on deep learning seems to be sensitive to the size distribution of 

objects not just depends on the size of objects. It is important to reduce these variances by suitable 

normalization techniques. 

 
 

4. CONCLUSION 

 

In this paper, we have investigated how our GSD normalization performs on object detection in 

aerial images. In addition, it was proved that the GSD normalization evidently helps to build a 

better object detector by adjusting the overall distribution over its object size for both training 

and testing phases. It is expected that the proposed GSD normalization is highly applicable in 

remote sensing field. The existing aerial images from satellite and planes could be used to 
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develop an object detector for Unmanned Aerial Vehicles (UAVs) by applying our GSD 

normalization technique. Therefore, it would save the budge to collect aerial images using UAVs. 

 

However, it is imprecise whether the improvement depends on the excessive number of training 

images generated by GSD normalization or the normalized distribution of object sizes. In 

addition, Faster R-CNN was the only object detection model used to examine the efficacy of our 

GSD normalization. In the future, we hope to experiment our proposed GSD normalization 

method on the state-of-the-art object detection models that are robust to scale. 
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