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ABSTRACT: Relative radiometric normalization (RRN) minimizes radiometric differences among 

images caused by inconsistencies of acquisition condition. In this study, a cross-sensor RRN method 

is proposed for optical satellite images from Landsat 8 OLI (L8) and Landsat 7 ETM+ (L7) sensors. 

The data from these two sensors have different pixel depths. Therefore, a rescaling on the radiometry 

resolution is performed in the preprocessing. Then, multivariate alteration detection (MAD) based on 

kernel canonical correlation analysis (KCCA) is adopted, which is called KCCA-based MAD, to 

select pseudo-invariant features (PIFs). The process of RRN is performed by using hybrid linear, 

power-law and polynomial regression with Gaussian weighted regression. In experiments, qualitative 

and quantitative analyses on images from different sensors are conducted. The experimental result 

demonstrates the superiority of the proposed nonlinear transformation, in terms of regression quality 

and radiometric consistency, compared with RRN using linear regression. 

 

 

1. INTRODUCTION 

 Earth spatial diversity commonly can be measured by the remote sensing strategy (D. Yuan 

et al., 1996). The analyzation of the spatial diversity mainly reached with the retrieval of the images 

that are captured by the satellites at different time and distances. Each of captured images to another 

by the satellites is dependent to time of acquisition and spectral signature including wavelength width, 

pixel depth and the resolution (N. Mishra et al., 2014) The dependent parameters to the satellite 

imagery requires an atmospheric correction algorithm, sun angle or illumination geometry and the 

associated properties to obtain ground reflectance determination (C. B. Schaaf et al., 2002). To define 

the ground reflectance, the historical of archived data scenes are impractical to obtain such parameters. 

The one alternative to define the intrinsic of radiometric information is to apply relative radiometric 

normalization (M. J. Canty, 2004). This method is an alternative even if the absolute surface 

reflectance is incapable to observe.  

Commonly, relative radiometric normalization (RRN) is performed based on the assumption that the 

relationship between at-sensor radiances required at different time from the area of constant 

reflectance is approximated by linear function (Y. Du, 2002). With this method, evaluation on human 

activity and influence on the land surface, studying land cover changes, monitoring water quality and 

air pollution are linearly achievable. For example, the most longest archival of satellite images is 

Landsat satellite that reach up to 50 years continuously.  Moreover, in order to multi-temporal 

coverage and spatial resolution that appropriate to human activity, the essential thing on Landsat 

satellites are the radiometric calibration consistency and stability (N. Mishra et al., 2014). Therefore, 

this makes Landsat satellites become a successful program on the further unrestrained mission to land 

cover change and global climate change studies with particular treatment to maintain image data 

requirement.  
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 The key to conduct RRN is based on the feature selection to select pseudo invariant feature 

between paired images on different time. The transformation of digital number is by treating as linear 

function that tied up to the reference. In this kind of feature selection, (Y. Du, 2002) and (C.-H. Lin, 

2015) has conducted by using principal component analysis, and (M. J. Canty, 2008) by using 

multivariate alteration detection (MAD). These kind of PIFs selection is deal with the linearity 

relationship between image acquisition. Another, the new method developed by (M. A. Syariz, 2019) 

uses weighting regression for linear regression to be nonlinear regression. However, based on the 

different of the intrinsic of spectral signature and pixel depth storage, this method is incapable to deal 

with. Therefore, each of captured images to another should be treated as different variation that are 

commonly nonlinear. This approach is inevitable if the use of linear relationship is applied.  

In the recently research conducted by (L. G. Denaro, 2018) the PIFs selection is done by the 

nonlinearity that use projection of the data to higher dimensional called as Kernel function. Therefore, 

this method is called as kernel multivariate alteration detection (KMAD). K-MAD maintains the PIFs 

by projecting the samples into the higher dimensional feature space and assume it as nonlinearity 

from the original feature space. In the practical, this method experienced the complexity such as 

storage complexity and time complexity. This means that the few of region of interest is implemented 

only to determine PIFs. Therefore, the combination of KCCA projected back to original feature space 

and find its maximum correlation is implemented to preserve the size complexity and time complexity. 

 

    

2. METHODOLOGY 

2.1. Pseudo-invariant Feature Selection 

 In order to retrieve the invariant pixels between images in difference dates, call date 1 and 

date 2 in bitemporal image, we suppose to form the integration between them to find optimum 

correlation to discriminate pseudo invariant features (PIFs). There are many methods to extract PIFs, 

in this paper we would like to use Hybrid Kernel Canonical Correlation Analysis with the use of 

Multivariate Alteration Selection (MAD) method to change detection. In case of using the data, in 

this paper we provide date 1 represented as X and date 2 represented as Y of Landsat Imagery namely 

Landsat 7 and Landsat 8 respectively. Image X and image Y have p and q of bands respectively and 

each band has the same n pixel numbers. To make the matrices, we assume X and Y are pair of 

multiple vectors. Therefore, X and Y have numbers of vector bands respectively as shown below. 

𝐗𝒑𝒙𝒏 = [

𝑋11 𝑋11 …  𝑋1𝑛

𝑋21 𝑋21 …  𝑋2𝑛… 
𝑋𝑝1

… 
𝑋𝑝2

…         
…  𝑋𝑝𝑛

] 𝐘𝒒𝒙𝒏 = [

𝑌11 𝑌11 …  𝑌1𝑛

𝑌21 𝑌21 …  𝑌2𝑛… 
𝑌𝑞1

… 
𝑌𝑝2

…        
… 𝑌𝑞𝑛

] (1) 

 Then, require the mean of each rows of X and Y images vectors called E(𝐗𝒑) and E(𝐘𝒑) 

respectively. From the both mean variables mentioned, we retrieve the variance and covariance matrix 

vectors and generate correlation function subject to its variance (2). 

𝝆 =
𝐶𝑜𝑣(𝐔,𝐕)

√𝑉𝑎𝑟(𝐔)𝑥𝑉𝑎𝑟(𝐕)
=

𝐚𝑇∑𝑋𝑌𝐛

√𝐚𝑇∑𝑋𝑋𝐚𝐛𝑇∑𝑌𝑌𝐛
 (2) 

 By using Lagrange multiplier, this leads to the set of eigenvalues and eigenvector. 

∑𝑿𝒀∑𝒀𝒀
−𝟏∑𝒀𝑿𝐚 = 𝝆𝟐∑𝑿𝑿𝐚   ∑𝒀𝑿∑𝑿𝑿

−𝟏∑𝑿𝒀𝐛 = 𝝆𝟐∑𝒀𝒀𝐛 (3) 

where 𝐚, 𝐛 and 𝝆 is the linear factor namely eigen vector 𝐚, 𝐛 and corresponding eigen value 𝝆. The 

equation above, then back to the projection that 𝐔𝒑𝒙𝒏 = 𝐚𝒑𝒙𝒑
𝑻 𝐗𝒑𝒙𝒏 and 𝐕𝒑𝒙𝒏 = 𝐛𝒒𝒙𝒒

𝑻 𝐘𝒒𝒙𝒏 define the 

rotation axis. Therefore, according to (L. G. Denaro, 2018) we retrieve the normalized MAD by using 

equation. 

∑ (
𝑴𝑨𝑫𝒊

𝝆𝑴𝑨𝑫𝒊

)
𝟐

𝒑
𝒊=𝟏 < 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 (4) 
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where the decision threshold (t) is based on chi-square test. this threshold defines that if the values 

are smaller, the values could be called as no-change. The choosing threshold is under assumption that 

𝛼 = 0.05  of probable observed. Subsequently, the sum of the mad square divided by standard 

deviation square refers to the degree of freedom p. 

The algorithm discussed before is CCA-based MAD method that is the basic concept of 

change detection done in the original feature space. This method deals with the linear assumption of 

the reflectance and homogeneous. However, to encounter the radiometric difference of images which 

is in different sensor and atmospheric condition that has been discussed in Chapter 1, that linear based 

approach should be considered changes to the nonlinear approach and take into account (L. G. Denaro, 

2018). Taking its projection of its nonlinear correlation on the higher dimensional feature space down 

into original space is the advanced concept to compensate nonlinearity problem in image processing. 

Therefore, this method is called as Hybrid-kernel CCA (HCCA) as shown in Figure 1. Such problem 

appears to be impractical hence concluded into two categories, storage complexity and time 

complexity detailed in Table 1 and Table 2 respectively. 

 

Table 1. Storage complexity 

Image size 
KCCA 

(Memory capacity) 

HCCA 

(Memory capacity) 

50 x 50 5.71 GB 5.54 GB 

100 x 100 8.84 GB 5.55 GB 

120 x 120 8.95 GB 5.57 GB 

150 x 150 35.1 GB 5.61 GB 

200 x 200 114.3 GB 5.65 GB 

300 x 300 ~ 6.04 GB 

 

Table 2. Time complexity 

Image size KCCA HCCA 

50 X 50 28 seconds 0.05 Seconds 

100 X 100 15 Minutes 0.26 Seconds 

120 X 120 41 Hours 0.51 Seconds 

150 X 150 2.8 Hours 1.6 Seconds 

200 X 200 49 Hours 7.9 Seconds 

300 X 300 ~ 1 Minutes 

Finally, by using HCCA the values that are lower to the threshold or called as invariant pixels between 

two date of images, will be conducted regression process as the further step. In this paper, there are 

three comparable regressions used namely linear regression, non-linear regression and proposed 

Gaussian weighting regression that will be explained in the following section. 

One of the idea to Figure 1 is to adjust the regularity of different pixels to be uniform or turn it to be 

equivalent level that come from different spectral signatures. 
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Figure 1. Flowchart of Hybrid-CCA 

 

2.2. Linear and nonlinear regression 

To define the parameters that generate the normalized image, the key to do is to use selectable or 

acceptable PIFs. These selected PIFs have been done in the previous chapter. The least square 

regression used to develop fitting line between two images, PIFs of Landsat 7 and Landsat 8. The two 

methods use polynomial regression from degree 1 to degree 5 as shown in Figure 2 (left), and power-

law regression from degree 0.1 to degree 1.5 as shown in Figure 2 (right). The linear regression is 

stated in Figure 2 for degree 1. We can see that there are having particular characteristic of fitting line 

motion or curve. For the polynomial regression, the curve-lines are problematic in the mapping 

function to y-value axis. For example, the problematic mapping functions appear merely visible to 

degree 3 to degree 5. However, the degree 2 also involves in the higher gray level values. Therefore, 

only linear fitting line is acceptable to conduct mapping function. 

The idea to power-law mapping function is to transform with respect to the term of monotonically 

increasing function. This term is precondition in digital image mapping which can be calculated 

inversely without redundant. In Figure 2 (right), degree 0.1 to degree 1.5 are fulfilling prerequisite 

mapping function. 

Therefore, this strategy to transform the digital image tied up to the reference is believable and 

become major discussion with recombination to Gaussian distribution function as proposed method. 

This Gaussian function is set to be weighting that bound to linear and nonlinear function. There are 

two condition to determine the standard deviation 𝜎 based on the mean 𝜇 as explained in equation (5). 

𝑥 is gray value digital number. 

𝑓(𝑥, 𝜎, 𝜇) = {
 ℯ

−(𝑥−𝜇)2

2𝜎2   , 𝑥 < 𝜇

 ℯ
−(𝑥−𝜇)2

2(3𝜎)2   , 𝑥 ≥ 𝜇

 (5) 
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Figure 2. Polynomial least square regression (left) and Power-law least square regression (right) 

To better understanding in equation (5), it can be clearly depicted in Figure 4 about how to determine 

the Gaussian weighting distribution function. 

 
Figure 3. Proposed Gaussian weighting function 

2.3. Normalization technique 

Normalization technique is the last step of image transformation. The image that need to be 

transformed is at the first time treated as dependent variable. In this case, Landsat 8 imagery is going 

to be transformed to Landsat 7 radiometric level (common level). To be concluded, Figure 4 is an 

illustration and it is denoted by the formula in equation (6). 

 
Figure 4. Proposed normalization function (monotonically increasing) 

𝑌 = 𝑓(𝑥, 𝜎, 𝜇) ∗ 𝑅1(𝑥) + (1 − 𝑓(𝑥, 𝜎, 𝜇)) ∗ 𝑅2(𝑥)(6) 

𝑅1 and 𝑅2 are the linear and nonlinear of regression function. 

3. STUDY AREA 

Landsat data of Taiwan and Japan region for 2013 to 2017 were used in this research. There are two 

datasets at different sensor of each location, namely Landsat 7 ETM+ and Landsat 8 OLI. Landsat 7 

images were selected as the reference image. 

 

4. RESULT AND DISCUSSION 

This section describes the visual and statistical result from three different RRN methods. The visual 

result is determined by comparing of normalized data images by the display and judge the overall 

performance of these methods. Both of radiometrically normalized images and reference images are 

displayed side by side on the monitor screen, and the visual closeness of each normalized image to 

the reference image is determined by qualitatively. If the visual image of the subject changes 

approaching to the reference and become similar or identical based on radiometric level, the image 
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can be regarded as radiometric adjusted to the reference image as shown in Figure 5. However, this 

visual comparison method has less convinced since our visual is prone to subjectivity. Therefore, a 

quantitative comparison will be discussed in the following section. 

 
Figure 5. Mosaic images of Landsat 7 (up) and Landsat 8 (down) of normalized images (Japan region) 

 

4.1. Root mean square error (RMSE) 

In quantitative comparison, we apply RMSE. RMS error is used to measure the statistical agreement 

of normalized image with the reference image.  

 

Table 3. Normalized images: Root mean square error (RMSE) 

Band 
Taiwan (RMSE) Japan (RMSE) 

LN NL PM LN NL PM 

1 1.23 1.26 1.26 1.82 1.80 1.80 

2 1.08 1.16 1.16 2.03 2.03 2.00 

3 1.29 1.42 1.41 2.33 2.36 2.35 

4 2.29 7.02 6.64 4.07 6.65 6.25 

5 2.34 6.69 6.41 3.32 6.11 6.00 

6 1.48 2.89 2.8 2.33 3.38 3.33 

You can see the algorithm in the equation 7 as follows. 

𝑹𝑴𝑺𝑬𝒑 = √∑ (𝑫𝑵𝒆𝒔𝒕
′ −𝑫𝑵𝒓𝒆𝒇)

𝟐𝒏
𝟏

𝒏
               (7) 

where 𝐷𝑁𝑒𝑠𝑡
′  represents the normalized digital number of band p of Landsat 8 imagery, 𝐷𝑁𝑟𝑒𝑓 is the 

digital number of band q in reference image.  

Thus, the digital number of pixels of the normalized image are compared with those of reference 

image of the corresponding band. If the difference between these number is quite small, the RMSE 

result will be small, this is implying that the Landsat 8 imagery is radiometrically more similar to the 

reference image. The result of RMSE as follows on Table 3. 

 

5. CONCLUSION 

This study presents a HCCA based PIF extraction and Gaussian weighting regression on the 

Landsat 7 and Landsat 8 imagery. The proposed PIFs extraction method result regularity of different 

pixels to be uniform or turn it to be equivalent level that come from different spectral signatures and 

this equivalent radiometric level furthermore to be the object of PIFs extraction based on 

heterogeneous spectral dependency. To treat the heterogeneous pixel signatures, the proposed 

normalization procedure is then applied. This kind of procedure become more flexible in the relative 

radiometric normalization. 
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