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ABSTRACT: 

 

Light Detection and Ranging (LIDAR) technology delivers high accuracy elevation values and 

ground features. However, the capability of this technology is inhibited in terms of its strength to 

penetrate certain surfaces. For instance, LIDAR is limited to the elevation values of the river water 

surface and not the elevation of its riverbed. Hence, topographic and bathymetric surveys are 

conducted to obtain an accurate set of elevation values for areas where the technology is unable 

to permeate. Bathymetric surveys are conducted using a scientific echosounder equipment, which 

utilizes sonar technology to determine the river depth relative to the water’s surface by 

transmitting sound pulses and calculating the interval between the emanation and regress of a 

pulse with respect to time. Like in all remote sensing measurements, errors are inevitable. Noise 

and external factors that cause faulty or bad readings result to data gaps. Gaps in the gathered 

elevation data sets can only be identified during filtering, which is done after actual survey. In 

addition, covering the gaps back in the field would mean additional costs. This study aims to 

optimize data gathered by using different interpolation methods to simulate points in the data 

gaps. Inverse Distance Weighted (IDW), Spline, and Kriging methods are used to extrapolate the 

values within the gaps. Statistical calculations are shown to analyze the accuracy and efficiency 

of the results. 

  

 

1. INTRODUCTION 

 

Raw LIDAR-derived elevation models have high accuracy, elevation z-values for terrain and surface 

models. However, the considered elevation values are limited to the above water level measurement 

of topographical features. In order to enhance the capability of this technology to provide as much 

information in a data as possible, geodetic leveling activities are conducted. To obtain elevation 

values or underwater depth and map certain underwater features, bathymetric surveys are carried out. 

Hydrographic and bathymetric surveys are necessary for various kinds of studies, such as scour and 

stabilization, flood inundation and mapping, spill and fill, and other research studies. Various 

bathymetric survey techniques with corresponding survey-grade equipment sets are employed for 

different purposes of hydrographic measurements. 

 

Integration of the data obtained from these hydrographic surveys are then implemented in order to 

hydrologically correct the depth of the specific water body. Similar to the variation of techniques 

employed during bathymetric survey, there are also a selection of bathymetric interpolation methods 

to cater to the variation of bathymetric survey methods, bathymetric points density, and various types 
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of water bodies. The integration of both elevation datasets in topography and bathymetry is vital to 

the completion of the digital elevation model. 

 

The objective of the study is to compare several interpolation methods of river bathymetry data by 

studying the calibration bathymetry points and calculating the root mean square error of the generated 

bathymetry elevation model to the validation bathymetry points. This study deals with a comparison 

among spatial interpolation methods for computing elevation or z-values in data gaps of bathymetric 

data used to measure the elevation of the riverbed in meters above sea level (MASL), then integrated 

to the light detection and ranging (LIDAR) derived digital elevation model, which has a 1 meter 

resolution, to rectify the elevation of the riverbed by interpolating the topographic surface with the 

elevation values of obtained by survey-grade equipment. Manual surveys are conducted in order to 

gather bathymetric data which represents the elevation values which can be randomly distributed and 

may sometimes carry erratic values and/or not carry sensible information at all due to instrument 

limitations. Hence, interpolation of the values of the points in the necessary segments are performed 

in order to predict the missing values, in lieu of its error or absence, using the neighboring sets of 

points. 

 

 

2.  REVIEW OF RELATED LITERATURE 

2.1  Digital Elevation Model (DEM) 

The LIDAR-derived digital elevation model (DEM) is classified into two models ‒ digital terrain 

model (DTM) and digital surface model (DSM) ‒ which showcases different topographical features. 

DTM refers to the topographic configuration of the bare Earth (Chen, Gao, & Devereux, 2017). DSM 

contains elevation values of the features found on the surface of the Earth, including both man-made 

and natural objects (Chen, Gao, & Devereux, 2017); (Maune, Kopp, Crawford, & Zervas, 2007). 

Using a matrix structure in a raster (grid) format, elevation values and topological relations between 

points in grid cells are recorded to form the DEM (Ramirez, 2006). The resolution of a grid DEM is 

equivalent to the grid size of the DEM, which reflects the ground distance (Liu, 2008). 

 

2.2   Bathymetry 

 

Hydrographic surveys are conducted to acquire data from and/or involving water surfaces. These 

hydrographic surveys focus on the measurement and data collection of the bottom of any form of 

waterbody, such as oceans, lakes, and rivers (NOAA, 1976). Bathymetric surveys are directed 

towards obtaining data, specifically, elevation, in this case, the elevation of the riverbed. Bathymetric 

surveys are customarily performed using acoustic echo sounding equipment, which can return 

accurate depth profiles (Gao, 2009) which is calculated from the interval between the return times of 

the pulses on the surface (Klemas, 2011). However, acoustic echo sounding is bound to certain 

limitations. Among its constraints with efficiency and accessibility (Gao, 2009), acquisition of 

bathymetric data by echo sounding on shoal waters poses difficulties due to certain environmental 

conditions and technical considerations (Tronvig, 2005).  

 

2.3  Interpolation 

 

Interpolation is a mathematical process of approximation, which determines a set of values for 

parameters or points given the values of its neighboring data (Mitas and Mitasova, 2005). In the 

geographic information systems (GIS) environment, interpolation methods are programmed to 

predict values given a set of discrete or continuous data. Interpolation has practical uses in data 

management, specifically known data alongside missing data, where long-term cycles are known 
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(Kaya, 2014).  However, no specific interpolation methods are strictly prescribed for use on 

bathymetric data (Curtarelli, Leão, Ogashawara, Lorenzzetti, & Stech, 2015).  

 

2.3.1 Inverse distance weighting (IDW): The inverse distance weighting or IDW interpolation 

method is a local neighborhood approach which makes use of the values of its nearest neighbors by 

distance to derive a set of neighboring values (Watson and Philip, 1985). IDW builds its basis on the 

premise that values at the data gaps (unsampled locations) can be estimated using the weighted 

average values of the points at a certain neighboring distance (Mitas and Mitasova, 2005), given that 

these weights are inversely proportional to a given distance (Watson, 1992). IDW is calculated as: 

𝑍𝑗 =  

∑
𝑍𝑖

(ℎ𝑖𝑗 + 𝛿)𝛽
𝑛
𝑖=1

∑
1

(ℎ𝑖𝑗 + 𝛿)𝛽
𝑛
𝑖=1

 (1) 

where 𝑍𝑗 is the unknown value to be interpolated, 𝑍𝑖 is the known value, 𝛽 is the weight, 𝛿 is the 

smoothing factor, and ℎ𝑖𝑗is the separation distance, calculated as: 

 ℎ𝑖𝑗 = √(𝛥𝑥)2 + (𝛥𝑦)2 (2) 

where 𝛥𝑥 and 𝛥𝑦are the distances between the unknown point j and the known point i according to 

reference axes (Mitas and Mitasova, 2005). 

 

Using IDW interpolation in Arcmap requires the Power variable. Its purpose is to determine the 

influence of the sample points used to determine the value. Its value must be greater than zero. The 

higher the Power, the more influence the nearest points have on the value. (University of Namur 

Department of Geography, n.d.) 

 

2.3.2 Kriging: Kriging interpolation is a geostatistical approach which takes the values of 

neighboring points and their respective locations as basis for estimation of the values of the specific 

points at a location (Kiš, 2016); (Longley, Goodchild, Maguire, & Rhind, 2010) primarily revolving 

around the principle that point values near sampled locations should be assigned a greater weight in 

approximating the values for prediction in unsampled locations to improve its accuracy (Kiš, 2016), 

with the assumption that the distance (with respect to the location) between point values in sampled 

locations have a spatial correlation that can be a basis for the variation of the surface (Childs, 

2004).Kriging interpolation method was originally designed for approximations in the mining 

industry (Tang, 2005), developed by Georges Matheron and Daniel Krige, with principle on the 

theory of regionalized variables (Kerry & Hawick, 2005). Ordinary Kriging (OK) is a commonly 

utilized kriging method and is referred to as best linear unbiased estimator (Kiš, 2016). The Kriging 

algorithm is expressed as:  

 𝑍(𝑆0)  = ∑ 𝜆𝑖𝑍(𝑆𝑖) 

𝑛

𝑖 = 1

  (3) 

where n is the number of values, 𝜆𝑖 is the weight for the measured value at the ith location, and 

𝑆0represents the location of the value to for prediction. 
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2.3.3  Spline: Spline interpolation is a piecewise polynomial interpolation, which  approximates 

values by using mathematical functions and splines  to fit values into several fixed points with values 

(Ikechukwu, Ebinne, Idorenyin, & Raphael, 2017) while minimizing the curvature of interpolated 

surface (Childs, 2004). In comparison to IDW, the spline interpolation method is designed to consider 

point values outside a minimum-maximum range of values in the sample data during the process of 

estimation (Liu, 2008) which carries the advantage of this method in predicting values in ridges and 

valleys (Childs, 2004). Spline interpolation algorithm is represented as: 

 𝑆(𝑥, 𝑦)  = 𝑇(𝑥, 𝑦)  +  ∑ 𝜆𝑗𝑅(𝑟𝑗)

𝑛

𝑗 = 1

  (4) 

where n is the number of points, 𝜆𝑗are coefficients found by the solution of a system of linear 

equations, and 𝑟𝑗is the distance from (x, y) to (𝑥𝑗 , 𝑦𝑗). 

 

There are two types of Spline interpolation in Arcmap: Spline and Spline with Barriers. Spline only 

requires the Weight factor. The value has to be greater than zero. At the minimum 0.1, Spline will try 

to closely match the data, and at greater values, the more smooth the fit will be. (Smith, 2015) 

Another, called, Spline with Barriers, utilizes breaklines in order to constrain the influence of closer 

points that are considered coincident points (ArcGIS, 2016). 

 

 

3. METHODOLOGY 

3.1 Topography and Bathymetry Dataset 

The bathymetric dataset used for this study is the length of Dapnan River located in the Municipality 

of Baganga, Davao Oriental, Philippines. The bathymetric points were obtained using South S86 and 

Trimble Survey Grade Global Navigation Satellite System (GNSS) receivers, in a combination of 

zigzag, cross-section, and centerline manner along the length of the river with a total stretch of 

approximately 22 km. The DTM used for integration with the combination of surveyed and 

interpolated bathymetric data was acquired using LIDAR technology, with a 1 meter by 1 meter 

resolution, on 2014 by the Data Acquisition Component of the Disaster and Risk Exposure 

Assessment for Mitigation (DREAM) Program.  

 

3.2 Bathymetric Data Integration 

To conduct the study, a continuous stream of actual bathymetric data was selected as a baseline for 

comparison. The chosen study area is a portion of Dapnan River with ideal conditions for the baseline, 

with a length of 1 km. The survey path covers 1.29306 km, traversing the center as well as some 

embankments in a zigzag manner. The area is home to an uninterrupted stream of 213 sample data 

points. 

 

3.2.1 Data Gap: An artificial data gap was made with 51 continuous points of the 213 total were 

chosen to act as the data gap. These were situated in the middle of the sampled location, with 81 

points before it and another 81 points after. This was made to ensure that there are sufficient value 

samples for each side of the gap, as basis for the prediction of values in the data gap during the 

application of the different interpolation methods and algorithms.  

 

3.2.2 Interpolation Methods: In this study, three interpolation methods were used to extrapolate the 

values for the gap. The best results – those closest to the actual values –  for each method was used 

as the actual values for bathymetric data integration. Table 1 shows the common base parameters 
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required for all the methods. IDW method used five (5) different values in the Power parameter:  0.25, 

0.5, 2, 3, and 6 for both With Barriers and Without Barriers technique. Kriging method was 

implemented in five different Semivariogram Models, namely: Spherical, Circular, Exponential, 

Gaussian, and Linear. Spline method was implemented using both Regularized and Spline with 

Barriers techniques with values: 0.1, 0.5, and 1. The parameter with smallest Root Mean Square Error 

(RMSE) is chosen. 

 

 

Figure 1. The bathymetric points superimposed to the DTM 

 

3.2.3  Comparison of Interpolation Methods:  

Using the results from 3.2.2, each result was integrated into the LiDAR DTM using IDW. A 

comparison is made by comparing their Root Mean Square Error (RMSE) and Standard Deviation 

values. The sample bathymetric points, including those points with values derived from interpolation, 

were integrated to form an interpolated surface. The resulting interpolated surface of bathymetric data 

points were analyzed and compared in terms of RMSE, calculated as: 

                                                             𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖 = 1                                                         (5) 

 

where n is the population and x is the deviation of the elevation values in comparison (Chai and 

Draxler, 2014). 

4.  RESULTS AND DISCUSSION 

The results were computed using the stated parameters in 3.2.2 and are presented in Tables 2, 3, and 

4 together with their Root Mean Square Errors (RMSE) and Standard Deviations. The barriers was 

observed to have improved the results for IDW and Spline methods. Comparing the results, the 

parameters that will be used with the respective interpolation method are: (1) IDW with barriers at 

the 6th Power; (2) Linear semivariogram model for Kriging, and; (3) Spline with barriers at 0.1 

Smoothing Factor. The approximated values derived from the three interpolation methods applied to 

identical dataset were incorporated to the existing values obtained from ground survey. Table 5 

outlines the results of each method, with RMSE, average, and standard deviation values for the 

validation points comprising 20% of the bathymetric data points. In each of the three interpolation 

methods, the best fit technique according to RMSE value, with respect to the individual parameter 

settings and models, are compared for analysis. Figure 2 and 3 shows a graph of the trend line of 

IDW method; Figures 4 to 8 shows a line graph of each semivariogram model of the Kriging method 

compared to the original dataset; and Figure 9 shows the graphical representation of the interpolated 

values using Spline method. 
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Table 1. Common parameters present in all methods 

Parameter 
Constant 

Value 

Cell Size 1 

Number of Points 12 

Search Radius (for IDW and 

Kriging methods) 
Variable 

 

Table 2. Parameters and results for IDW method 

Power 

Without Barriers With Barriers 

RMSE 

Standard 

Deviatio

n 

RMSE 

Standard 

Deviatio

n 

0.25 0.45004 0.43700 0.40128 0.36770 

0.5 0.44985 0.43622 0.36100 0.33262 

2 0.44718 0.43101 0.27528 0.27357 

3 0.44460 0.42766 0.26476 0.26705 

6 0.42954 0.41193 0.25406 0.25399 

 

Table 3. Parameters and results for Kriging method 

Semivariogram Model RMSE 
Standard 

Deviation 

Spherical 0.39040 0.31398 

Circular 0.39035 0.31370 

Exponential 0.39498 0.32073 

Gaussian 0.44242 0.32147 

Linear 0.39030 0.31342 

 

Table 4. Parameters and results for Spline method 

Value 

Regularized Spline 

(Weight) 

Spline with Barriers 

(Smoothing factor) 

RMSE 
Standard 

Deviation 
RMSE 

Standard 

Deviation 

0.1 9.64757 6.94313 0.48298 0.35641 

0.5 6.67182 6.57728 0.65400 0.39609 

0 4.93911 4.97314 0.65526 0.39365 

     

 

Table 5. Validation results for each method 

Method RMSE Average Standard Deviation 

IDW with Barriers 

(Power: 6) 
0.19764 -0.03543 0.19674 

Spline with Barriers 

(Smoothing Factor: 0.1) 
0.19669 -0.03633 0.19559 

Ordinary Kriging 

(Linear semivariogram) 
0.19646 -0.04266 0.19404 
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Figure 2. Inverse Distance Weighting 

Interpolation Method (Without Barriers) 

 

 

 

Figure 6. Kriging Interpolation Method 

(Exponential Semivariogram Model) 

 

Figure 3. Inverse Distance Weighting 

Interpolation Method (with barriers) 

 

 

Figure 7. Kriging Interpolation Method 

(Gaussian Semivariogram Model) 

 

 

Figure 4. Kriging Interpolation Method 

(Spherical Semivariogram Model) 

 

 

Figure 8. Kriging Interpolation (Linear 

Semivariogram Model) 

 
Figure 5. Kriging Interpolation Method 

(Circular Semivariogram Model) 
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Figure 9. Spline Interpolation Method 

 

 

5. CONCLUSION AND RECOMMENDATION 

The bathymetric data integration of the combination of survey-acquired values and predicted 

values by interpolation techniques is feasible and necessary in the absence of values, considering 

mishaps during data gathering and field survey. However, specific interpolation techniques and 

algorithms must be employed to suit the dataset’s behavior and application. This study limited its 

comparison to three interpolation methods and findings show that their performance is nearly 

similar (Table 5).  Given the RMSE values, the average error computed is at 19 cm, which is 

within the range of acceptable RMSE of 20 cm. This study can be further developed by comparing 

the methods to different rivers with varying characteristics and considering other interpolation 

methods that are applicable to geospatial datasets, while modifying their parameter settings and 

observing their deviations as these parameters vary. 
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