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ABSTRACT: Rivers are a mgor source of freshwater. They support aquatic and terrestria
ecosystems, provide transportation, and generate hydropower. The Murray—Darling Basin is so
important to Australia. This paper provides an overview of river basin monitoring and
management, focusing on its importance and the approach. Managing river basin watersheds
are critica for developing policies for sustainable water alocation and development. The
procedure is discussed to finding remote sensing data sources and data access which are
relevant to river basin monitoring and management, and demonstrate. This paper addresses
using satellite data and Earth system modelling data sources to estimate surface water budgets.
Estimate the distributed water balance of the Murray-Darling Basin improve and evauate
hydrological models used in water resource analysis monitor and understand variability in
hydrologically complex regions. In this research has so many challenges about In situ data are
gparse, In Situ data are often politically sensitive, the basin is evaporation dominated and there
is considerable meteorological and hydrological complexity. This research includes remotely
sensed water balance analysis and wetland mapping and monitoring.

1. INTRODUCTION

A River Basin is an area of land that drains water into a river and its tributaries. So the basin
includes areas that drain into tributaries and rivers. A river basin consists of surface water and
underlying ground water. This paper uses the word “watershed” or “sub water basins’ to talk
about the small portion of the basin. These watersheds usualy separated by ridges and hills
caled Drainage Divide. All these watersheds collect rain or/and snow water and drains it into
common outlets (Stream, tributary, lake or wetland).

Internationally, the Murry Darling Basin (MDB) is recognised one of Importance River Basins
in the world. It showsin Figure 1.

Importance of River Basin Management (RBM) is defined as the management of water
resources of a basin as part of the natural ecosystem and in relation to their socio-economic
setting. MDB is important and crucial because it ensures that the water is properly allocated
among states (Queensland, New South Wales, Australian Capital Territory, Victoria and South
Australia).
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Figure 1: MDB importance for the world
2. METHODOLOGY OF WATER BUDGET ESTIMATION
This research considers the following co elements for the procedures.

2.1. River Basin Network Based on Remote Sensing
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Figure 2: Conceptual Water Budget [1]

(https://www.water-research.net/index. php/the-hydrological-cycle-water-budgets)




The hydrologic budget (Figure 2) consists of inflows, outflows, and storage as shown in the
following equation:
According the above figure 2:

Inflow = Outflow +/- Changesin Sorage (1)

Inflows add water to the different parts of the hydrologic system, while outflows remove water.
Storage is the retention of water by parts of the system. Because water movement is cyclical, an
inflow for one part of the system is an outflow for another.

Precipitation = Evapotranspiration + Total Runoff (2)
Where

Total Runoff = Direct Runoff + Base flow (groundwater component of stream flow)

Water quality monitoring also is an important part of river basin management. This paper
focuses on data relevant for monitoring water quantity in MDB.

2.2. Data from HydroBasins database

This research used Hydrological data and maps based on SHuttle Elevation Derivatives at
multiple Scales (HydroSHEDS) provide data sets of stream networks, watershed boundaries,
drainage directions, flow accumulations, distances, and river topology information.
HydroSHEDS uses digital elevation data from the Shuttle Radar Topography Mission (SRTM)*,
a C-band (5.6 cm) radar, carried on-board the Space Shuttle Endeavour. HydroBASINS is a
database aiming to provide the shoreline polygons of al globa lakes with a surface area of at
least 10 ha. Additional attributes for each of the 1.4 million lakes include estimates of the
shoreline length, average depth, and water volume and residence time. All lakes are co-
registered to the global river network of the HydroSHEDS database via their 1ake pour points
[3]-[6]. Initially, HydroBASINS database used to download Australian hydrological data and
processed the data. Finally, the research detected fig. 1(a) data set. It has sub basins boundary as
well. The research found 10 hydro sub basins. This data slightly has deference with Basin as
defined in Section 4 (1) of the Water Act 2007 in Australia. It is showing fig. 1(b).

(@) Processed by HydroBASINS dataof MDB  (b) Compare with shoreline polygons with
legal boundary of MDB

Figure 3: Compare boundaries of MDB and sub lakes from HydroBASINS database



2.3. Monitoring water availability in River Basins

Water flow in streams within the basin and it depends on the following components [2]. Figure 4
and table 1 show the details of idea behind and sensors of the data capturing.

Preci pi tation Can be obtained from the surface based and remote sensing
Evaporation and transpiration observations

Infiltration: soil characteristics, soil moisture, terrain and slope
Can be calculated based on other observable

geophysical parameters

Surface water: soil moisture, reservoirs and groundwater storage

Runoff } Can be calculated based on a water balance equation

This resource is about how MDB'’s water is made available and used by people in Austraia
Australia has very low rainfall (except seasonaly in the tropics); and this rainfall is very
variable season-to-season and year-to-year. Most of the runoff bringing water into the MDB
river system falls on less than 15% of the land area — except in relatively rare times of flood.
Yet MDB is Australia' s most important food and fibre growing region.
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Figure 4. Moniting Water Bdget Components: Surface-Based Observations [2]

Table 1: Satellites and Sensors for Water Budget Components

Satellites Sensors Spectral Measurements Water Budget Component
A TMI: 10-85 GHz
TRMM & GPM GMI: 10-183 GHz Precipitation
Tl B PR and DPR (Ku and Ka)
GMI, DPR
Terra & Agqua MODIS Visible, Near IR, Middle IR Snow Cover, Evapotranspiration
Landsat 7, 8 TM, ETM#+, OLI bl ol Evapotranspiration
Thermal IR
SMAP Microwave Radiometer L-Band Soil Moisture
GRACE & GRACE-FO Microwave Radar K-Band Groundwater
Jason 2, 3 Alfimeter C-Band and Ku-Band Reservoir Height
TMI : TRMM Microwave Imager MODIS: MODerate Resolution Imaging Speciroradiometer
PR Precipitation Radar TM: Thematic Mapper
GMI: GPM Microwave Imager ETM+: Enhanced Thematic Mapper
DPR: Dualfrequency Precipitation Radar OLI: Operational Land Imager



2.4. Datafrom IMERG
In this research used IMERG data to find Time average map period of 01.01.2014 to
31.05.2019. GIOVANNI web portal was used for map downloading process. Figure 5 shows the
details for the process. Figure 6 shows the visualisation of the data requested area. The boundary
box for the data downloading used (138.5684,-37.6821), (152.4885,-24.5856) was defined by
Murray-Darling Basin Authority.
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Figure 5: GIOVANNI web portal screen shot of Time average map
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Figure 6: Result of the request for the data

If the data consider average time series the figure shows the graph to decide which year to
account for this research. The research was found for the period 2016-2018 is good because it
has significant dropping hydrological perception estimation.
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- The user-selected region was defined by 138.5685E, 37.68215, 152 4BB6E, 24.58565. The data grid also limits the analyzable region to the following bounding
points: 138.65E, 37.655, 152.45E, 24.655. This analyzable region indicates the spatial limits of the subsetted granules that went into making this visualization
rasult.

Figure 7: Result of the request for the data



25.Global Land Data Assmilation System (GLDAS) for Water Budget
Data

According Water Budgets: Foundations for Effective Water-Resources and Environmental
Management [7], [8] can be used a water and energy balance model with assimilation of remote
sensing data. GLDAS make output the above our four required variables the following table 2.

Table 2: GLDAS inputs and Outputs

I nputs I ntegrated outputsinclude
Rainfal: TRMM and multi-satellite base data v' Soil Moisture
Meteorologica data: global reandysis and | v Evapotranspiration
observations-based data from Princeton University v" Surface/Sub-surface runoff
Vegetation mask, Land/Water mask, Leaf Area| v° Snow water equivalent
Index (LAI): MODIS (GLDAS-2)
Clouds and Snow (for surface radiation): NOAA
and DM SP satellites

YV VWV VY

2.6. Estimation of Water Budgets

The equation 3 is considering that there is no surface, sub-surface, or groundwater net
inflow/outflow in the watershed, surface RO and base flow contribute to discharge.

The water-budget equation for asmall watershed can be expressed as:
Pr=ET + DS+ RO + Base Flow 3

Where

Pr = Precipitation

ET = Evapotranspiration

DS = Change in water dstorage in the watershed can include surface (snow, soil
moisture), and sub-surface (root zone moisture, groundwater components)

RO = Surface Runoff

Base Flow = Sub-Surface Runoff

The required data availability is showing the following table 3. In this research used GLDAS
data sources to find the estimation.
Table 3: Obtain Water Budget Components

Water Budget Data Sour ces
Component
Pr GPM-IMERG, GLDAS
ET ALEXI, MODI 6, GLDAS
DS SMAP, GLDAS
RO, Base Flow GLDAS

The water budget components data was obtained from GIOVANNI web portal. The paper
highly gives credibility to them and read acknowledgement to fins more details.

The figures 8 and 9 show the data from the Giovanni time average maps for 2016 to 2018 under
the above four water budget components for the process. Table 4 shows each data meta data
information.
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Air Temperature (1)

Albedo (1) Total precipitation rate  (GLDAS_NOAH025 M v2.1) kg m-2s-1 ° | 20000101 | 20190731
Almospheric Moisture (1)

Canopy Water Storage (1) Storm surface runoff  (GLDAS_NOAHO25 Mv2.1) kgm-2 * | 20000101 | 20190731
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Figure 8: GIOVANNI web portal screen shot of Time average map selection for Pre, ET, RO
and Base flow.

Table 4: Data selection information

Variable Units Sour ce Temp Res Spatial Res

ET kgm“s™ GLDAS Model Monthly 0.25°

Pre kgm“s™ GLDAS Model Monthly 0.25°

RO kg m™ GLDAS Model Monthly 0.25°

Baseflow kg m™ GLDAS Model Monthly 0.25°

Pre

ET

RO

Flow | .. | ) -.

: Figufe o: Annual Datafor ééch category



3. RESULT/ANALYSIS

3.1. Annual Pre, ET, and RO over MDB
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Pre = : —— - . =
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Figure 10: Annua Datafor each category with MDB

The above precipitation data (fig. 10) is depicting 2016 is a large estimate annual rainfall at
MDB comparing with 2017 and 2018. It is illustrating significantly dropping after that. It is
same manner are showing ET and RO as well.

4. CONCLUSION

This research focused on the application of remote sensing-based data for access to river
networks and assessing surface water budget components in river basins. River Basin
Management also requires accurate identification and delineation of watersheds and stream
channels within a basin based on terrain and slope. Identification of characteristics of the basin -
soil and vegetation, lakes and reservoirs, aguifer/groundwater storage are necessary.
Information requires about water demand -residential, agricultural, and industrial in the basin.
All freshwater components were based on remote sensing and/or Earth system models and all
data are open source. This research demonstrated Remote sensing-based data together with GIS
analysis help in assessing the water budget in river basins. Monthly/seasona and inter-annual
variations can be used in water resources and river basin management. In addition to the water
budget component, information about socio-economic characteristics and In Situ data (e.g. river
discharge, ecosystems) are required for sustainable river basin management.
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