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ABSTRACT: Satellite remote sensing enable the collection of high-resolution bathymetry data to be integrated 
by terrestrial information in order to develop coastal terrain models and shoreline model. Satellite derived 
bathymetry is promising due to its ability to fill the gap of depth obtained from hydrographic survey. This 
research focused on developing a bathymetric model of small islands in Morotai, Indonesia. The model was 
created using depth derived from satellite imagery to provide data in the near-shore gap between sea level and 
the beginning of sonar data. A semi-parametric generalized linear model (GAM) was applied and combined 
echo-sounding measurements and the reflectance of blue, green, and red of four satellite images (World View 2, 
Kompsat 3A, Sentinel 2A and Landsat 8) were used. We evaluated the accuracy of the algorithm and compare it 
with Multi-linear Regression. From the results, we found that GAM outperformed MLR in deriving depth 
information. Furthermore, the use of finer resolution images also increased the accuracy of SDB model. The 
accuracies range from 0.9-1.9 when applying GAM using WorldView-2 while when applying MLR, the 
accuracies range from 1.9-5.3. 

 
 
1. INTRODUCTION 

 
Accurate satellite derived bathymetry is considered of fundamental aspect towards monitoring sea floor and 
deriving nautical charts to support marine navigation. Collecting depth information in particular for shallow water 
area has been done mainly by using bathymetric surveying, for i.e., ship-borne echo sounding measurements and 
LIDAR (Light Detection and Ranging) data. However, these techniques are costly both in time and money. 
Moreover, the first technique is constrained by ship access and safety reason (Pattanaik et al., 2015), while 
LIDAR for bathymetry is very expensive (Kanno et al., 2013). 
 
Considering those limitations, extracting depth information from remote sensing data has been an option during 
last decades. Satellite derived bathymetry provides a cost and time effective solution for a relatively accurate 
bathymetry data. The initial research on the estimation of water depth was started by Lyzenga (1978) in 1978. 
With the widely available of remote sensing data, the methods on monitoring sea bottom were increased so that it 
can be applied by many researchers such as Philpot (1989), Kanno et al. (2013), Stumpf et al. (2003) and Chénier 
et al. (2018) .  
 
This research aims to evaluate the accuracy of three methods in deriving depth information from remote sensing 
data which was tested in shallow water area of a small island in Morotai, Indonesia. For this research, multi 
spectral imageries from four sensors were used. In this case, comparisons between two SDB techniques as well as 
accuracy assessments using available bathymetric data were done in order to identify approaches that have the 
best performance given the environmental conditions of the study site at the time of image acquisition. 
 
 
2. STUDY AREA AND DATASET 

 
2.1 Study Area 

 
This research focuses on deriving bathymetry for a small island located at the south-western part of Morotai 
Island coastal area (Figure 1). The central point of the study area is at geographical coordinates 2° 7' 30" N and 
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128° 13' 23" E. Morotai Island is the northernmost island in Indonesia. It is surrounded by many small islands and 
is one of the tourist destinations located in North Maluku Province since it has clear water with stunning white 
sandy beaches. It has beautiful underwater scenery with coral reef formation and sea grass  (Hengky, 2017; 
Saputro et al., 2012).  
 

 
Figure 1. Study area in a small island located at the south-western part of Morotai Island coastal area, North 

Maluku Province, Indonesia. Four datasets from four satellite imageries, namely: a) WorldView-2, b) Kompsat-
3, c) Sentinel-2A, and d) Landsat 8 OLI/TIRS are used to estimate depth information, and true color composite is 

used as background in Figure 1a-d (green pixels represent vegetation, red-brown pixels are built-up, dark blue 
pixels are water, white bluish pixels are mixed of water and sand, and white pixels are sand). Red rectangle 

shows the study area location.  

 
2.2 Remote sensing dataset 

 
The satellite data sets from four different sensors were used in this study. Information regarding images used in 
this research is provided in Table 1. Specifications of each satellite images are described as follows: 
 
WorldView-2: WorldView-2 image was recorded in 21 February 2015 with 2 m spatial resolution. The image 
was obtained from Indonesia Geospatial Information Agency (BIG) in Ortho Ready Standard (OR2A) product. It 
means the product is map projected without topographic relief applied with respect to the reference ellipsoid 
(DigitalGlobe, 2013) and is radiometrically corrected and sensor corrected. Four spectral bands were used to 
estimate depth information in this study, namely blue (0.44-0.51 µm), green (0.51-0.58 µm), red (0.62-0.69 µm), 
and near infrared (0.77-0.90 µm) parts of the spectrum (DigitalGlobe, 2019).   
 
Kompsat-3: Kompsat-3 (Korean Multi-Purpose Satellite) was developed by the Korea Aerospace Research 
Institute (KARI) and launched on 17 May 2012. The image was recorded in 16 June 2016 with 2.8 m spatial 
resolution. This image was obtained from Posco International Corporation (Indonesia Representative Office) in 
Level 1G product which is corrected for geometric distortion and projected to UTM. This Level 1G includes all 
radiometric corrections and sensor corrections. However, terrain effects are corrected using coarse DEM, namely 
SRTM DEM. For this study, only four spectral bands that were used for SDB estimation, for i.e., blue (0.45-0.52 
µm), green (0.52-0.6 µm), red (0.63-0.69 µm), and near infrared (0.76-0.9 µm) parts of the spectrum (KARI, 
2015).  
 
Sentinel 2A: The Sentinel-2A image was obtained freely from The Copernicus Open Access (ESA, 2019) in level 
L2A.The time acquisition of the image was in 21 May 2019 with 10 m spatial resolution. For this research, we 
used only four bands of Sentinel 2A: blue (0.49 µm), green (0.56 µm), red (0.665 µm), and near infrared (0.842 
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µm) parts of the spectrum (ESA, 2015). Sentinel-2A adopted for this study was in Level-2A product which is 
provided with Bottom of Atmosphere (BoA) reflectance. A standard radiometric and geometric corrections 
including the orthorectification with sub-pixel accuracies  (SUHET, 2015) 
 
Landsat 8 OLI/TIRS: Landsat has a 16-day revisit time and passes Indonesia at approximately 02.00-03.00 
GMT. The images are available freely from USGS (2019b). For this study, we used Landsat 8 OLI/TIRS which 
was recorded in 20 February 2019 with 30 m spatial resolution. Only four spectral bands of this image were 
applied to the SDB model, namely the blue (0.45–0.515 µm), green (0.525–0.605 µm), red (0.63–0.69 µm), and 
near infrared (0.75–0.90 µm) parts of the electromagnetic spectrum (USGS, 2019a). For the purpose of SDB 
extraction, we used Landsat image that was in the surface reflectance format. The image has been implemented a 
standard radiometric and geometric corrections including the orthorectification with sub-pixel accuracies  (USGS, 
2019a).  

 
Table 1. Images used for bathymetry extraction in this study 

Sensors Acquisition Date Resolution (m) 
WorldView-2 21-02-2015 2 

Kompsat-3 16-06-2016 2.8 
Sentinel-2A 21-05-2019 10 

Landsat 8 OLI/TIRS 20-02-2019 30 
 
 

2.3 Bathymetry data 
 

Single Beam Echo Sounder (SBES) is used to build and validate the models. The SBES was collected in August 
2018. In order to have zero tides influence, tide correction was applied to the data. The depth information ranges 
from 3 m up to 30 m. For the implementation of the SDB model, we selected randomly 25% of training data from 
the SBES measurement points. The reason of this selection was that we would like to test the capability of each 
algorithm by using a minimum training data. Further, we evaluated the accuracy of SDB model by using 75% of 
SBES points.   

 
 

3. METHODOLOGY 
 

3.1 Pre-processing of images 
 

Before applying SDB algorithm to estimate depth information, we applied dark object subtraction method to the 
images using ENVI software. For each image, five datasets were created; the first dataset consists of four bands in 
blue, green, red, and near infrared bands (visible plus near infrared/NIR bands); the second dataset consist of three 
bands in blue, green, and red bands; the rest scenarios only use two visible bands, i.e., blue and green, blue and 
red, and green and blue bands. By using these scenarios, we would like to test which band combinations obtain a 
better result of depth information. 
 
Based on assumption from Kanno (2011) and Vinayaraj et al. (2016), spectral radiance (λs) in shallow water 
observed by a sensor is consisting four elements: atmospheric scattering (λa), reflection of sea surface (λr), in-
water scattering (λw), and bottom reflection (λb) (see Figure 2). Therefore, the observed spectral radiance in 
shallow water (Ls) can be expressed by a function of wavelength as: 

 

𝜆𝑠 = 𝜆𝑎 + 𝜆𝑟 + 𝜆𝑤 + 𝜆𝑏 ( 1 ) 

As part of image preprocessing, water correction method was applied to those images based on Lyzenga (1981) 
and Gholamalifard et al. (2013). The methods assumed that there is no variation of sea-surface and atmospheric 
scattering over the water area and that in the deep water, there is no bottom reflectance element in the spectral 
radiance observed by the sensor. Since the deep water has a low spectral value, we can estimate the transformed 
radiance (λs) from spectral properties of this deep area by making another assumption that the reflectance is solely 
due to scattering. Thus, we can estimate the average value of pixels in the deep water and transformed the 
measured radiance as follows (Gholamalifard et al., 2013):    

𝑌𝑖 = log(𝜆)𝑖 − 𝑚𝑒𝑎𝑛(𝜆𝑑)𝑖 
( 2 ) 

(λs)i  is the measured radiance in shallow water for band i  and (λd)i  is the radiance in the deep water. The 
transformed radiance value (Yi) is linear function of the water depth since it shows a linear relation between 
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spectral value in shallow water and deep water. By using this formula, we removed the influence of atmospheric 
and sea-surface scattering. 

 

 
Figure 2. The elements of spectral radiance measured by sensor in water area; modified from Kanno (2011) 

 
3.2 Modeling of Bathymetry  
 
SDB model from remote sensing image works with an assumption that there is a linear relation between depth and 
water leaving radiance recorded by sensors. When the depth increases, the water leaving radiance decreases 
simultaneously until reaching a level at which bottom reflection is zero or undetectable as occur in the deep water 
area (Chénier et al., 2018). In this study, to extract depth information from remote sensing images as in Table 1, 
we used semi-parametric regression using spatial coordinate that was developed by (Kanno et al., 2011a). We 
compared the capability of SDB model derived from this algorithm with other method: multiple linear regression 
(Clark et al., 1987; Hamilton et al., 1993). 
 
Semi-parametric regression using spatial coordinates (GAM): This method is actually the extension of 
Lyzenga’s method (Lyzenga, 1978) by combining it with a spatial interpolation method. It was developed by 
Kanno et al. (2011a) by modeling error term in Lyzenga’s method based on spatial dependency called semi-
parametric regression. The formula can be written as (Kanno et al., 2011a; Kanno et al., 2011b): 

ℎ = X𝛽 + 𝑡(𝑧) +  𝜀′ ( 3 ) 

where X  and 𝛽  are the Lyzenga’s estimators derived from SBES measurements and visible band of images. 
Meanwhile, 𝑡(𝑧) is a smooth nonparametric function of the two-dimensional coordinate vector 𝑧 and 𝜀’ is a zero 
mean random variable. Penalized thin-plate regression spline was used when performing the equation. It is available 
in ‘mgcv’ package, especially the Generalized Additive Model (GAM) smoothing function. This package is 
available in ‘R’ software. Therefore, for the rest of the manuscript, we used the term ‘GAM’ for this method. 
Furthermore, in this experiment, we used the smooth term function ‘s’ which was optimized by Generalized Cross 
Validation (GCV) and regression ‘splines’ with fixed degrees of freedom. The critical step in implementing the 
SDB model is in defining this degree of freedom which is written as 𝑘. Based on Wood (2017), the value of 𝑘 
should not be too large or too small either. In this experiment we set various 𝑘 values, for i.e., 100, 200, 400, 600, 
800 and 1000. We evaluated the results by checking the RMSE value resulted by the model. Detailed explanations 
of this algorithm are available in Pya and Wood (2016) and Wood (2017).  
 
Multiple Linear Regressions (MLR): Many previous studies used MLR for the extraction of bathymetry data 
using multispectral bands in shallow water (Clark et al., 1987; Hamilton et al., 1993). Van Hengel and Spitzer 
(1991) suggested that this method works by an assumption that the bottom reflectance and water composition are 
constant within all part of the image. Further, he said that multispectral bands of the imagery are affected by the 
bottom reflectance. By implementing this algorithm, the echo sounding measurement data is considered as the 
dependent variable. The transformed radiance 𝑌𝑖 is considered as the independent variable. The dependent variable, 
in this case, in situ data was used to determine the regression coefficient and estimates the depth information in 
shallow water area. The water depth can be estimated using the following equation (Van Hengel and Spitzer, 1991): 

 
𝑊𝑑 =  𝛽0 + 𝛽1𝑌1 + 𝛽2𝑌2 + ⋯+ 𝛽𝑛𝑌𝑖 ( 4 ) 

where 𝑌1, 𝑌2,…, 𝑌𝑖 are the transformed radiance derived from Equation 2 for each band, 𝛽0 is representing the y-
intercept, while 𝛽1, 𝛽2,…, 𝛽𝑖  are slope for each band. These 𝛽-coefficients are obtained from the multiple linear 
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regressions with echo-sounding points. For this research, we set standard parameter when applying the algorithm. 
 

3.3 Assessment of SDB models 
 
To evaluate the results of bathymetry model, we assessed the accuracy by comparing the SDB data generated by 
the SDB model and the in situ measurements. For this purpose, we used 75% of SBES points as testing data and 
calculated the accuracy by using statistic model, the Root Mean Square Error (RMSE) shown in Equation 5. 

𝑅𝑀𝑆𝐸(𝑑𝑒𝑝𝑡ℎ) = ��(𝑋𝑖 − 𝑋𝑖′)2

N  
( 5 ) 

where 𝑋𝑖 is the actual depth value (from validation set), 𝑋𝑖′ is the expected value of SDB, and 𝑁 is the number of 
elements in the data. Not only we calculated an overall RMSE value, but we calculated also the RMSE for five 
depth ranges, namely 0-5 m, 5-10 m, 10-15 m, 15-20 m, and 20-30 m. The aim was to find the most optimum 
depth for the SDB model.   
 
 
4. RESULTS 

 
4.1 Generalized Adaptive Model 

 
From Figure 3a, we can see that 𝑘 = 1000 obtained the lowest RMSE values implying the best performance of 
this model with 𝑅2 equal to 0,977. By using the lowest 𝑘 equal to 100, we obtained lower 𝑅2  up to 0.951. 
Furthermore, it is obvious that by using 𝑘 = 1000, image Kompsat-3 performed better than WorldView-2 and 
Landsat 8 OLI/TIRS performed better than Sentinel 2A. As an overall, Kompsat-3 provides the best accuracy of 
SDB model by using GAM.  
 

 
(a) (b) 

Figure 3. The RMSE value when applying GAM for: (a) four different sensors (using four bands: red, green, blue 
and NIR), namely: WV2=Worldview-2, K3=Kompsat-3, S2A=Sentinel 2A, and LC8=Landsat 8 OLI/TIRS; (b) 

five band combinations (B=band, 1=blue, 2=green, 3=red, and 4-NIR) of Worldview-2 

Table 2. The accuracy of SDB Model using GAM applying to five datasets of WorldView-2 with various band 
combinations (see notations in Figure 3 for image band used). Asterisk symbol shows the best accuracy obtained 

for each band combination. 

𝒌 
Band combinations 

B1234 B123 B12 B13 B23 
100 1.481 1.944 1.504 1.968 1.767 
200 1.291 1.296 1.297 1.594 1.473 
400 1.151 1.155 1.155 1.316 1.261 
600 1.064 1.067 1.068 1.169 1.128 
800 1.009 1.011 1.014 1.082 1.039 

1000 0.956* 0.958* 0.960* 1.013* 0.987* 
 
When we compare GAM performance applying at five different band combinations of WorldView-2, 
combination using four bands is only slightly better than other combinations such as three bands and two bands. 
From the experiment, combination of blue-green bands produced slightly better result than combination of blue-
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red and green-red bands.  
 
4.2 Multi Linear Regression 
 
From Figure 4 and Table 3, we can see that SDB model using four bands of WorldView-2 produced the best 
accuracy with 𝑅2 equal to 0.91, whereas, RMSE value of SDB models using Kompsat-3 with four and three 
bands only differ little with 𝑅2>0.85. Surprisingly, when using Sentinel 2A and Landsat 8 OLI/TIRS for SDB 
model, dataset with two bands, specifically red-green bands provided the best RMSE result. From Figure 4, it is 
obvious that WorldView-2 gives the best performance in generating SDB model, followed by Kompsat-3. In this 
case, the SDB results were significantly influenced by spatial resolution of data that were used.  
 

 
Figure 4. The RMSE value when applying MLR for four different sensors, namely: WV2=Worldview-2, 

K3=Kompsat-3, S2A=Sentinel 2A, and LC8=Landsat 8 OLI/TIRS and using five band combinations (B=band, 
1=blue, 2=green, 3=red, and 4-NIR) 

 
Table 3. The accuracy of SDB Model using MLR applying to five datasets with various band combinations (see 

notations in Figure 3 for image band used and name of satellite images). Asterisk symbol shows the best accuracy 
obtained for each band combination. 

Bands 
Sensors 

WV2 K-3 S2A LC8 

B1234 1.989* 2.461 4.661 4.752 
B123 1.991 2.450* 4.739 4.836 
B12 2.233 3.022 4.193* 4.193* 
B13 3.195 3.587 5.229 5.331 
B23 4.193 2.787 4.938 5.101 

 
 
4.3 Comparison of the Models 

 
A comparison of RMSE value for each depth range is presented in Figure 5. By comparing the SDB models by 
using four bands of images (red, green, blue, and NIR bands), in general, both models are perform well in all 
depth range. However, by using GAM method, WorldView-2, Sentinel 2A and Landsat 8 OLI/TIRS performed 
better in shallow water area at depth range 0-5 than other depth ranges. This is supported by information 
provided in Figure 6. The scatter plots in Figure 6(a,c,d) show that the actual depth data from in situ 
measurement and SDB model fits better at the shallow water area (0-5 m). While Kompsat-3 performed slightly 
better in deep area at depth range 20-30 m as also supported by Figure 6b. By using MLR method, the optimum 
depth for Worldview-2 is at depth range 0-5 m, while for other images, they performed slightly better at depth 
range 10-15 m than other depth ranges.  
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(a) GAM (b) MLR 

Figure 5. The RMSE value when applying GAM and MLR at various depth ranges for four different sensors 
using four bands (red, green, blue and NIR) (see notations in Figure 3 for name of satellite images). 

 

GAM 

(a) WV-2 

 

(b) K-3 

 

(c) S 2A 

 

(d) LC8 

 

MLR 

(e) WV-2 

 

(f) K-3 

 

(g) S 2A 

 

(h) LC8 

 
Figure 6. Validation plots of depth model when applying GAM and MLR using four different sensors using four 

bands (red, green, blue and NIR). The size of validation set is 75% of all in situ measurements. 
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5. DISCUSSIONS 
 

In general, using more bands (three and four bands) provide a better result, especially when using MLR as 
described by Bramante et al. (2013) the number of bands used in the model is related to the capability of the 
algorithm to discriminate different bottom types and water masses, thus more bands may produce a more 
accurate. However, GAM model was not greatly influenced by the number of bands when performing SDB 
model (see Table 2). On the other hand, using only two bands (specifically red-green bands) for SDB models 
was also promising, especially when using Sentinel 2A and Landsat 8 OLI/TIRS (see Table 3).    
 
Our results demonstrated the outperformance of GAM compared to MLR as also proved by Kanno et al. (2011a). 
The inclusion of spatial coordinates in GAM model could improve the accuracy of SDB model. For example for 
WorldView-2 images, by using GAM, the accuracies range from 0.9-1.9 while by using MLR model, the 
accuracies range from 1.9-5.3. 

 
The results also show that the use of finer resolution images such as Kompsat-3 and WorldView-2 improved the 
SDB accuracies.  In fact, a decrease in image spatial resolution affects spectral heterogeneity of the image since 
it causes mixed pixels (see visual comparison in Figure 7). However, there were unexpected results such as the 
fact that Landat 8 OLI/TIRS with 30 m spatial resolution outperformed SDB model using Sentinel 2A which has 
finer resolution (10 m). This could be due to the spectral reflectance variations of the images captured by 
different sensors. It might occur that by using GAM, coarser resolution has less noise. Besides, it may also 
probably due to the presence of pixels with no data (see Figure 7c,g) implying a comprehensive atmospheric and 
water column correction is needed.  

 

 
Figure 7. Comparison of SDB model resulted by applying GAM and MLR for four datasets (a,e) WorldView-2, 

(b,f) Kompsat-3, (c,g) Sentinel 2A, and (d,h) Landsat 8 OLI/TIRS. Each image consists of four bands and for 
applying GAM, we set 𝒌 = 𝟏𝟎𝟎𝟎. Land elevations were derived using DEMNAS elevation data from BIG 

(2018) 
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CONCLUSIONS 
 

This research provides a comparative analysis of two bathymetry models by applying both models to four 
different satellite images and band combinations. GAM model obtained better results than MLR and among four 
satellite images; Kompsat-3 produced the best accuracy of SDB model when using GAM, and WorldView-2 
obtained the best accuracy when using MLR. Integration of more bands to the SDB models proved to an 
improved accuracy. However, when only using two bands, combination of red and green bands showed the best 
performance. Further study is needed to evaluate other possible band combinations which can improve the 
accuracy.  
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