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ABSTRACT: Mangroves in China have experienced various changes in different time periods due to anthropogenic 

disturbances, climate change and national restoration policy. However, few studies quantitatively analyzed their 

extents and distribution changes. This study mapped and detected the changes of mangroves from 1996 to 2018 at 

the national scale. Firstly, a 2018 mangrove baseline was classified for the whole coastal China using ALOS PALSAR-
2 and Landsat 8 composite imagery within a Random Forests Classifier. The mangrove base map has an overall 

accuracy greater than 95% and a kappa coefficient of 0.8858. Then a combination of map-to-image method and 

image-to-image method was created to detect the mangrove changes in the period 1996-2018, 2007-2018 and 2010-

2018 using Normalized Difference Vegetation Index (NDVI) and Land Surface Water Index (LSWI) and HH band. 

This study demonstrated that the total areas of China’s mangroves in 1996, 2007, 2010 and 2018 were 19,420 ha, 

24,684 ha, 25,572 ha and 26,553 ha respectively. More than 90% mangroves were distributed in Guangdong province, 

Guangxi province and Hainan province. Mangroves in most areas kept increasing from 1996 to 2018 mainly due to 

the national conservation actions. The largest change observed was in Guangdong province where 4249.35 ha of 

mangrove gain occurred in the past 20 years. Changes in local mangrove extent were the consequence of both climate 

and anthropogenic drivers. These updated maps are of importance to the sustainable management and ecological 

assessments of mangrove ecosystems in China.  
 

1. INTRODUCTION 

 

Mangroves growing up in the intertidal area, provide a wide range of essential ecosystem services. They can serve as 

a nursery for juvenile coral reef fishes of many species (Nagelkerken et al., 2000), and protect the coastal zone against 

erosion and storms (Arkema et al., 2013). What’s more, mangroves are also an important sink for carbon and play a 

great role in blue carbon ecosystems (Duarte et al., 2013). Murray et al. (2011) estimates that mangroves sequester 

34.5-38.2 billion tonnes CO2 with an average carbon fixation rate of 5.98 tonnes CO2/ha/yr, which can contribute a 

lot to mitigating climate change and achieving sustainable development goals (Duarte et al., 2013). However, 

mangrove ecosystem is amongst the most vulnerable and threatened ecosystems in the world and has experienced a 

dramatic loss due to human population growth and coastal zone development. It has been reported that more than 50% 

of mangrove forests were lost globally since the 1980s (Spalding et al., 1997; Hamilton and Casey, 2016). 
International programs, such as Reduce Emission from Deforestation and Degradation (REDD+) and Kyoto Protocol, 

highlight the significance of immediate protection and conservation to prevent the further loss of mangrove. China 

only makes up about 0.14% of the world's mangrove area, but it holds one third of the world's mangrove species 

(Wang, 2007). However, mangroves in China experienced a 50% loss, from 40,000 ha in 1957 down to 18,800 ha in 

the mid-1980s (He and Zhang, 2001). Thus, it is of great importance to protect and recover the mangrove ecosystems 

in China. 

Remote sensing (RS) technology provides a way to monitor the spatiotemporal distribution and health status of 

mangrove ecosystems, which helps us manage and protect them. To date, several global mangrove forest maps have 

been produced, such as The World Atlas of Mangrove (Spalding et al., 2010), Mangrove Forests of the World (Giri 

et al., 2011), and Global Database of Continuous Mangrove Forest Cover for the 21st Century (Hamilton and Casey, 

2016). However, these mangrove forest maps are incomplete or outdated and may not reflect the latest spatial 
distribution of mangrove forests in China. Thus, in recent years, many researchers in China started to map the 

mangrove forests at a national scale. Wu et al. (2013) mapped the mangrove forest ecosystems in China for the 1990s, 

2000s, and 2010s by visual interpretation of Landsat imagery. Jia et al. (2014) applied the object-based method to 

generate the mangrove forest maps and evaluated the effectiveness of conservation on mangroves in China (Jia et al., 

2016). Combining the Landsat 7/8 and Sentinel-1A images, Chen et al., (2017) created a mangrove forest map of 

China in 2015 with high accuracy in Google Earth Engine (GEE) platform. Hu et al. (2018) monitored the mangrove 

forest changes in China between 1990 and 2015 through Landsat-derived spectral-temporal variability metrics. 

Although these studies gave an overview of the mangrove forests in China, the long-term holistic views of China’s 

mangrove distributions are not completed. Jia et al. (2018) quantified the mangrove forests dynamics from 1973 to 

2015 based on Landsat imagery which provided the first dataset of long-term China’s mangrove distribution. However, 

due to the cloud influence, some areas entirely or partially lacked available images. Therefore, the results of their 
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research are not comprehensive. Synthetic Aperture Radar (SAR) images are not influenced by weather conditions 

and can reflect the structure information of mangroves which could help distinguish them with other vegetations. 

Thus, the combination of optical and SAR images would improve the accuracy and reliability of mangrove dynamics 

dataset.  

The main objectives of this study are to 1) create the baseline of mangrove distributions in China with high 

accuracy; 2) establish the new long-term China’s mangrove dynamics based on Landsat and ALOS PALSAR 
imageries. 

 

2. MATERIALS AND METHODS 

 

2.1 Study Area 

 

Natural mangroves in China are distributed from Yulin Port, Hainan province (18° 9′ N) to Fuding, Fujian province 

(27° 20′ N), while planted mangroves have extended to Leqing Bay in Zhejiang province (28° 25′ N) (Wu et al., 

2013). The study area (Figure 1) included mangroves in the whole coastal zone of China, encompassing five coastal 

provinces (Hainan, Guangxi, Guangdong, Fujian, and Zhejiang), Hong Kong Special Administrative Region, Macao 

Special Administrative Region and Taiwan.    

 
2.2 Data 

 

2.2.1 Remote Sensing Imagery: JAXA L-band SAR mosaics from JERS-1 for 1996 were downloaded from JAXA 

(JAXA EORC mosaic: http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm) and ALOS PALSAR mosaics for 

2007, 2010 and 2018 were obtained in GEE. A Lee filter was used to filter the ALOS PALSAR bands to reduce the 

speckle effects (Lee, 1980). The SAR data was in digital number and need to be converted to sigma nought 

backscattering coefficient using Equation (1), with a calibration factor (CF) of -83 for ALOS PALSAR-2 and -84.66 

for JERS-1. All SAR mosaics were resampled to 30 m resolution. 

 

σo = 10×log10(DN2) - CF                                  (1) 

 

 
Figure 1 Location of study area and potential mangrove growth area in the whole coastal zone of China 

 

Landsat 5 TM and Landsat 8 OLI Surface Reflectance (SR) images between 1996 and 2018 were acquired in 
GEE. Based on the cfmask band from SR collection, clouds and shadows in images were identified and we only chose 

the good quality images with clouds less than 10%. Besides, in order to reduce the influence of tidal inundation, the 

Normalized Difference Vegetation Index (NDVI) (Tucker, 1979) and Land Surface Water Index (LSWI) (Gao, 1996) 
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were calculated for mangrove samples to select the images with NDVI > LSWI, which has been applied for mapping 

rice paddy and mangroves (Zhou et al., 2016; Chen et al., 2017). Finally, the median of image collection for each 

year were used to supplement SAR data.  

 

2.2.2 Ground-truth Data: Field surveys were carried out in Zhejiang province and Fujian province. Photos of 

mangrove forests and surroundings were taken, and their corresponding locations were recorded by handheld GPS. 
Besides, mangrove locations were also collected by literature review and Google Earth very high spatial resolution 

satellite images. All the ground-truth data were used to select the training and validation samples. 

 

2.2.3 Other Data: Data from OpenStreetMap and administrative map of China were adopted to delineate the coastline. 

30-m SRTM DEM data were used to mask out the regions that may not be suitable for mangrove planting. 

 

2.3 Methods 

The whole process (Figure 2) can be divided into two parts. One is to create the mangrove distribution map for 2018 

by classification and the other is to detect the changes for the year 1996, 2007, and 2010 by combing image-to-image 

and image-to-map change detection methods. The classification was conducted in GEE platform while the change 

detection was completed in R studio. Before classification, we first determined the area where mangroves are likely 

to occur. A 10-km coastline buffer zone for both inland and sea sides was created. And as most mangroves are 

distributed in areas with an elevation between -5 m and 10 m above the mean sea level and a slope of less than 

10о(Chen et al., 2017), we masked the area with high elevation and steep slope. The results are displayed in Figure 

1. Then four widely used indices were selected. They are NDVI, Enhanced Vegetation Index (EVI) (Huete et al., 

1997), modified Normalized Difference Water Index (mNDWI) (Xu, 2006) and LSWI. Additionally, Jia et al. (2014) 

developed the Inundated Mangrove Forest Index (IMFI) to distinguish the inundated mangrove with sea water. 
Therefore, we finally calculated these five indices for Landsat images. ALOS PALSAR-2 was acquired with HH and 

HV bands while the JERS-1 was HH band alone. Additionally, we calculated the HH-HV and HH/HV for ALOS 

PALSAR-2 mosaics. 
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Figure 2 Flowchart of mangrove baseline mapping and change detecting 

 

Based on the ground-truth data, we selected samples for mangrove and non_mangrove (seawater, agriculture, 

aquaculture, salt marsh and mudflat). 70% of the samples were randomly selected for training, and the remaining 

were used for validation. Then Random Forests (RF) Classifier was employed to classify the ALOS-Landsat stack in 

2018. A measure of variable importance within the RF classifier revealed 6 bands (LSWI, NDVI, mNDWI, IMFI, 

HH, HH-HV) to be important to identify mangroves. Thus, these bands were used as input variables in a RF classifier. 

Finally, the mangrove distribution map in coastal China for 2018 was generated and the classification accuracies were 

calculated for each area. 
Change detection in RS is usually achieved by image-to-image (Bruzzone and Prieto, 2000) or map-to-map 

(Dingle et al., 2011) approaches. Image-to-image method relies on identifying the objects by image enhancement 

while map-to-map method is based on the multi-date data classification. However, the image-to-image method would 

be influenced by the differences in image calibration and map-to-map method may suffer from error propagation. To 

overcome these limitations, Thomas et al. (2018) propose a new map-to-image method to detect changes, which used 

the base map to mask the image in other years and then got the normal distribution of the pixel values in masked area 

by removing the changed pixels. This method has been proved to be effective to detect the changes in mangrove 

forests. However, it doesn’t work when the mangrove areas are small, or the changes are not obvious. The mangrove 

distribution in China is relatively sparse, thus, it is necessary to improve this method to make it more applicable in 

China. In this study, we combined the map-to-image method with image-to-image method to detect the changes of 

mangroves in China. Firstly, we used the mangrove map in 2018 which we got before to mask the ALOS-Landsat 
stacks for 1996, 2007 and 2010. Then the masked images were subtracted by the images in 2018 to produce new 

images which represent the change between two years. Two subtracted images were created for NDVI, LSWI and 
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HH band respectively. A series of threshold values for NDVI, LSWI and HH based on the mean differences between 

mangrove and other classes were used on the new image to determine the changed from unchanged pixels. The 

changed pixels were defined as the loss of mangrove while the unchanged pixels were the remaining mangrove. 

What’s more, a 1000-m buffer were created to detect the gain of mangrove, which may occur at outside the mask 

area. The changed pixels in buffer area were reclassified into mangrove and non_mangrove. The new mangrove pixels 

were regarded as gains of mangrove.  
 

3. RESULTS 

 

The mangrove distribution map over China in 2018 was displayed in Figure 3. A total of 26,553 ha of mangroves 

were classified across 5 coastal provinces, Hong Kong, Macao and Taiwan, ranging from 10.62 ha in Macao to 

10,853.46 ha in Guangdong province (Table 1). The accuracies for most areas were over 90% between 88.89% 

(Zhejiang) and 99.02% (Hong Kong). The overall accuracy for the whole region was 96.03%, with a kappa coefficient 

of 0.8858.  

 
Figure 3 Spatial distribution of China’s mangroves in 2018 and zoom views of three mangrove natural reserves: (a) 

Guangxi Beilun Estuary National Nature Reserve; (b) Zhanjiang Mangrove National Nature Reserve; and (c) 

Zhejiang Ximen Island Marine Special Reserve. The background of (a)-(c) are ALOS PALSAR-2 mosaic in 2018 
shown in R: G: B = HH: HV: HH-HV composite. 
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Table 1 Classification results and accuracy assessments for each province (district) 

Province Area 

(ha) 

Producer 

accuracy (%) 

User accuracy 

(%) 

Overall 

accuracy (%) 

Kappa 

coefficient 

Zhejiang 24.48 80.28 81.80 88.89 0.6200 

Fujian 908.55 96.92 98.06 98.76 0.9496 

Guangdong 10,853.46 94.88 95.56 96.22 0.9042 

Guangxi 9,410.76 97.30 98.47 98.30 0.9571 

Hainan 4,269.78 93.17 93.36 93.25 0.8646 
Hong Kong 533.34 98.89 99.06 99.02 0.9794 

Macao 10.62 - - - - 

Taiwan 542.34 87.72 94.52 93.83 0.8115 

Total 26,553.33 - - 96.03 0.8858 

Note: accuracy was not calculated in Macao due to the limited samples. 

 

The mangrove area changes for each area over the period 1996-2018, 2007-2018 and 2010-2018 were shown in 

Table 2 and the mangrove areas for each area in 1996, 2007, 2010 and 2018 were displayed in Figure 4. Over the 

period 1996-2010 mangroves in China experienced a net gain of 7133 ha and the areas for 1996, 2007 and 2010 were 

19,420 ha, 24,684 ha and 25,573 ha respectively. Most mangroves were distributed in Guangdong, Guangxi and 

Hainan which contributed to more than 90% of the total area. Mangrove areas in Guangdong, Guangxi, and Hong 

Kong kept increasing during the past 20 years, while mangroves in Zhejiang kept decreasing at the same time period. 
Mangroves areas in Fujian, Hainan, Macao and Taiwan experienced a net gain firstly and then a net loss. The largest 

change observed was in Guangdong where 4,249.35 ha of mangrove gain occurred between 1996 and 2018. The 

smallest changes were observed at Macao, where 1.08 ha of mangrove loss was observed between 2010 and 2018. 

Since 2010, the mangrove areas have been relatively stable compared with before. 

 

4. DISCUSSIONS 

 

4.1 Base Map Classification  

 

In this study, the mangrove baseline over China in 2018 was created by combining ALOS PALSAR and Landsat 

images. The method successfully mapped mangrove extent by reducing the influence of clouds and tides. This method 

was able to achieve an overall accuracy in excess of 95% and a kappa coefficient of 0.8858. The accuracy of the 
mangrove baseline at Zhejiang was less than 90% due to the similar spectral information between planted mangroves 

and salt marshes. However, its accuracy in excess of 80% represents the map of sufficient quality for use within the 

research community and policy making. Comparing with the existing national mangrove maps, the mangrove areas 

(26,553 ha) generated from this baseline was greater than others (Chen et al., 2017: 20,303 ha; Jia et al., 2018: 

22,419ha). One reason is that they got the mangrove areas in 2015 which may be changed in the next 3 years. Besides, 

they used the Landsat imagery alone which would be influenced by clouds. The combination of optical and SAR data 

in this study provided the comprehensive and different information for the whole study area without the influence of 

clouds. Furthermore, optical imagery was able to provide information on the chemical and biophysical composition 

of the land covers while SAR data provided more information on their structure. This could help identify the 

mangrove with other coastal vegetations. Previous researches have revealed that there was a 20% increase in accuracy 

by combining optical and SAR datasets than using them independently (Ramsey et al., 1998; Held et al., 2003), 
although the combination of optical and SAR has received little attention for mangrove mapping, especially in China. 

The causes of error within the base maps were mainly caused by the tidal influences and spectral similarity of 

vegetations, particularly where other coastal wetlands adjoined mangroves. For example, in Zhejiang province, the 

planted mangroves were much shorter than the natural species with only around1-m height and distributed sparsely. 

These characteristics makes them more susceptible to the tidal inundation. Although we select the Landsat images in 

low tide period, we can’t ensure the SAR image is in low tide period since there is only one SAR mosaic each year. 

As we can see in Figure 3(a)-(c), it is more difficult to identify the mangroves in Zhejiang province by visual 

interpretation compared with other two provinces. Thus, the lower classification accuracy in Zhejiang province is 

probably due to the influence of tides on SAR image. Besides, Zhejiang province has a large area of salt marshes, 

such as about 2432-ha Spartina alterniflora (Wang et al., 2015). Salt marshes usually distributed in adjacent areas of 

mangroves as shown in Figure 3(c), which have similar spectral information with mangrove especially in high tide 

period. So, it is hard to distinguish them without enough ground-truth data or very high-resolution images. Despite 
this, the accuracy of the baseline in each region ensure that they are suitable for informing both local and regional 

management strategies, whilst satisfying the requirements for national initiatives, including “Blue Carbon Project”. 
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Table 2 Mangrove area changes for each province (district) in 1996, 2007 and 2010 compared with 2018 

Province 1996  2007  2010 

 Gain (ha) Loss (ha) Net (ha)  Gain (ha) Loss (ha) Net (ha)  Gain (ha) Loss (ha) Net (ha) 

Zhejiang 17.91 0.54 17.37  48.15 14.67 33.48  28.35 12.69 15.66 

Fujian 91.17 333.9 -242.73  219.60 243.99 -24.39  259.74 168.21 91.53 

Guangdong 64.44 4,313.79 -4,249.35  58.95 995.94 -936.99  26.10 499.14 -473.04 

Guangxi 75.42 2,052.90 -1,977.48  65.25 911.25 -846  25.92 628.38 -602.46 

Hainan 47.61 568.89 -521.28  94.95 162.72 -67.77  95.22 92.34 2.88 

Hong Kong 0.45 94.41 -93.96  0.09 31.77 -31.68  2.25 12.96 -10.71 

Macao 0.45 6.3 -5.85  0.18 2.25 -2.07  2.07 0.99 1.08 

Taiwan 7.29 67.68 -60.39  22.32 15.93 6.39  3.60 8.91 -5.31 

Total 304.74 7,438.41 -7,133.67  509.49 2,378.52 -1,869.03  443.25 1,423.62 -980.37 

 

 

 
Figure 4 Mangrove area changes for each province (district) and the whole coastal zone in China 
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4.2 Change Detection 

 

Mangroves changes were detected using a combination of map-to-image and image-to-image methods. These 

methods enhanced the detection of change features between images 11acquired in different years and avoid the error 

propagation caused by different classification results in different images. Furthermore, it is not limited to a certain 

mangrove area and thus, has a wide applicability in the field of change detection. However, the threshold values for 
detecting changed pixels may influence the accuracies. In this study, we calculated the mean differences between 

mangroves and other classes and then chose the minimum difference as the threshold to detect changes. In most cases, 

it worked, but the mean differences can only represent the average changes. Thus, there were some errors in the 

detection process which would be improved by further modification. 

Our results demonstrate that mangroves in China have a tendency of gain between 1996 and 2018. According to 

literature reviews and field surveys, these gains were strongly associated with the national conservation actions. Since 

the early 1990s, China’s government has published a number of laws and regulations to protect mangrove ecosystems, 

including the Action Plan for China Biodiversity Protection (State Environmental Protection Agency, 1994), the 

Forestry Action Plan for China’s Agenda of the 21st Century (State Forestry Administration, 1995; 1996), the Plan 

for China Ecological Environment Conservation (The State Council, 1998), and the Action Plan for China Wetland 

Protection (State Forestry Administration, 2000) and so on. Under these laws and regulations, many mangrove 

reserves have been established which contributed to the reforestation of large-scale mangroves.   
 

4.3 Future Work 

 

This study provided the datasets of current mangrove distributions in China and their changes in the past 20 years. 

However, there are more work need to be done to help protect and recover mangrove ecosystems. Firstly, more details 

about the changes should be obtained, such as the changes in landward and seaward boundaries of mangrove 

ecosystems and the biomass changes. Then, according to the changes, quantitatively analysis can be conducted to 

evaluate the vulnerability of mangrove ecosystems to both climate change and human activities. Finally, suitable 

areas for recovering mangrove and exiting mangroves which need to be protected in the future would be found. 

 

5. CONCLUSION 

 

This study updates the mangrove baseline over China in 2018 by combining ALOS PALSAR and Landsat datasets 

with an accuracy greater than 95%. A novel combination of map-to-image method and image-to-image method was 

used to detect the changes in mangrove extent based on NDVI, LSWI and HH band in each year. The approach 

outlines a method that can detect the small changes in mangroves. The total areas of China’s mangroves in 1996, 

2007, 2010 and 2018 were 19,420 ha, 24,684 ha, 25,572 ha and 26,553 ha respectively. More than 90% mangroves 

were distributed in Guangdong province, Guangxi province and Hainan province. Mangroves in most areas kept 

increasing during the past 20 years due to the national conservation actions. It is important that mangrove changes 

are tied closely with additional ancillary data on the provision of ecosystem services. Thus, it is necessary to evaluate 

the vulnerability of mangrove ecosystems to climate change and human activities for future protection and 

reforestation.   
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