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ABSTRACT: There are three common features typical of natural terrain landslides, i.e., source, 
trail and deposition. The term run-out, generally used to describe the downslope displacement of 
failed geo-materials by landslides, is used in this study to represent the combination of the 
landslide trail and deposition. In general, the area of a landslide in the landslide inventory, detected 
from remotely sensed images, might contain the run-out area (called landslide affected area in this 
study), unless manually removed by the geologist or expert using the auxiliary data. However, the 
run-out area should be excluded in a strict definition of real landslides because it is caused by 
different mechanisms. This might produce biases and reduce the reliability of landslide inventory, 
i.e., landslide samples including run-outs. To this end, this study integrates topographic variables
derived from the digital elevation model with Random Forests, one of machine learning algorithms,
for separating landslide source and run-out areas from the landslide affected area. Preliminary
results indicate that the accuracies of developed models can reach 80% in most cases.

1. INTRODUCTION

Landslide inventory (database) is an important material for landslide analysis (Guzzetti et al., 
2012), such as landslide susceptibility and hazard assessments. From a geotechnical or geological 
point of view, there are three common features typical of natural terrain landslides (Dai and Lee, 
2002), i.e., source, trail and deposition. The term run-out, generally used to describe the downslope 
displacement of failed geo-materials by landslides (Mondini et al., 2011), is used in this study to 
represent the combination of the landslide trail and deposition. In general, the area of a landslide in 
the landslide inventory, detected by means of automatic or semi-automatic algorithms from 
remotely sensed images, might contain the run-out area (called landslide affected area in this study), 
unless manually removed by the geologist or expert using aerial stereo-photos or other auxiliary 
data. The run-out area should be excluded in a strict definition of real landslides because it is 
caused by different mechanisms. This might produce biases and reduce the reliability of landslide 
inventory, i.e., landslide samples including run-outs. To address this issue, this study integrates 
topographic variables, such as aspect, curvature, elevation and slope, derived from the Digital 
Elevation Model (DEM) with Random Forests, one of machine learning algorithms, for separating 
landslide source and run-out areas from the landslide affected area as well as refining the present 
landslide inventory. 

2. DATA AND METHODS

An area of 117 km2 of the Kaoping watershed in southern Taiwan is selected as the study site 
(Figure 1). The used 10-m DEM was produced by Chiang et al. (2012). A landslide inventory 
generated after Typhoon Morakot was further interpreted manually to separate the source and run-
out classes according to stereo aerial photos and auxiliary data. This study selects top 3 polygons 
which are the largest area size for exploring the separability between landslide source and run-out 
areas based on the Random Forests algorithm. The inventory polygons are converted into the 
pixel format (10 by 10 meters) to extract the corresponding topographic factors for analysis. 
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Figure 1. Study site 

 
The Random Forests (RF) classifier (Breiman, 2001) is employed for constructing the landslide 
susceptibility model in this study. This is an extension of Decision Tree (DT) algorithm which is a 
classical and popular approach in the machine learning domain. The concept of both RF and DT 
classifiers is similar and both adopt the Information Gain (IG) measure to evaluate the degree of 
impurity of causative factors. The larger IG indicates that the corresponding causative factor 
should be selected in a higher priority to construct a conditional node and ignore this factor in 
next computation. After several iterations, a tree model, which comprises a sequence of "If-Then" 
rules, is extracted to classify other instances. The difference between the random forests and 
decision tree algorithm is that the former randomly separates training data into many subsets to 
build many trees (so called the forest) and optimize them. 
 
For modeling process, 2/3 of landslide source and run-out samples (training data) are randomly 
selected polygon by polygon to construct the RF models. The developed models are used to 
predict other polygon samples (check data). This study applies three commonly used quantitative 
indices for verification, including Overall Accuracy (OA), User’s Accuracy (UA), and Producer’s 
Accuracy (PA). 

 
 
3. RESULTS AND DISCUSSION 

 
According to the algorithm and procedure mentioned in the previous section, the constructed 
models are verified by the OA, UA and PA indexes derived from confusion matrices. The 
quantitative evaluations for verification are shown in Table 1. The table shows that the preliminary 
results can reach 80% in most cases. However, some disagreements can be observed, such as the 
models constructed from No. 1 and No. 2 polygons for prediction of No. 3 polygon. More precisely, 
there are higher omission (mission) errors for landslide source predictions. To address the 
unbalanced prediction results, the constructed models with an extremely false alarm or missing 2



error (called over-fitting effect), the impact of using cost-sensitive analysis to adjust the decision 
boundary (e.g., Lai, 2018; Tsai et al., 2016) for the improvement of the RF algorithm will be 
explored in the future. 

 
Table 1. Quantitative evaluations for separating landslide source and run-out areas 

Training 
Data 

Check 
Data 

OA (%) Run-out Source 
UA PA UA PA 

No. 1 No. 2 98.75 1 0.98 0.97 1 
No. 3 0.61 61.72 1 1 0.06 

No. 2 No. 1 98.38 0.97 1 1 0.96 
No. 3 0.6 60.69 1 1 0.03 

No. 3 No. 1 89.51 1 0.83 0.79 1 
No. 2 85.81 1 0.77 0.74 1 

 
 
4. CONCLUSION 

 
In this study a procedure is developed for the integration of topographic data and machine learning 
for separation of landslide source and run-out areas in order to refine landslide inventory. The 
preliminary results show that the accuracies can reach 80% in most cases. Future works might 
usefully extend the present use of the constructed models to adjust the decision boundary for 
improving the prediction capability, and to predict all inventory polygon samples. 
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