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Abstract: Recent advancements in the geographic information systems and remote sensing 
technology have supported the development of geospatial-temporal modeling approaches for air 
pollution. Particulate matter (PM10) and ozone (O3) are two pollutants of great concern in all 
pollutants. Previous studies estimated the spatial-temporal variability of PM10 and O3 using a 
single model, but only a few studies considered exposure assessment using multiple models and 
compared model performance. In this study, PM10 and O3 data during 2015 to 2018 were collected 
from specific industrial monitoring stations provided by the Taiwan Environmental Protection 
Agency. Three geospatial-temporal modeling approaches including land-use regression (LUR), 
geographically weighted regression (GWR), and geographically and temporally weighted 
regression (GTWR) were used to predict PM10 and O3 exposure. Furthermore, the kriging-based 
hybrid model was integrated with these three geospatial-temporal models, and totally performs 
six models for each pollutant for our comparison. The results showed that integrating the GTWR 
and kriging-based hybrid models have the greatest performances compared to LUR, GWR, and 
the combination of both with kriging-based hybrid models. R2 obtained from the GTWR coupled 
with kriging-based hybrid models for PM10 and O3 was 0.96 and 0.92, respectively. Of all 
variables used, wind speed, pure residential area, manufacturing, park; rice field, orchard; and 
forest land were important predictors for PM10. Whereas, wind direction, industrial area, dry 
farming, and orchard were variables selected to predict O3. 

1. BACKGROUND AND AIM
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Particulate matter with an aerodynamic diameter between 10-2.5 μm (PM10) and ozone 
(O3) exposure has been identified as a significant risk factor for the development of lung cancer 
and adverse health outcomes from cardiovascular and respiratory causes (Brook et al. 2010; Pope 
and Dockery 2006; Aguilera et al. 2015; Pope et al. 2002; Sabaliauskas et al. 2015). As personal 
monitoring is not generally feasible for large cohorts, methods to assess accurately within-city 
variability in exposure to PM10 and O3 are required (Jerrett et al. 2005; Wu et al. 2017). In the past 
period, there are many predictive methods for capturing ambient air pollution gradients. Spatial 
interpolation, such as Kriging interpolation (Bayraktar and Turalioglu 2005), predicted pollutant 
level in an area from a limited number of monitoring sites. Spatial autocorrelation, the statistical 
relationships of distance among the measured points were used to explain and predict the variation 
of air pollutants in the surface. However, intra-urban air pollution concentrations could vary due 
to proximity to industrial parks, road and traffic density, and other site characteristics, such as 
population and land use (Tunno et al. 2016). The lack of consideration about the local emission 
sources between monitoring sites could deteriorate the accuracy of predictions. Compared with 
spatial interpolation, land-use regression (LUR) has been proved to have more advantages on 
characterizing the spatial relationships between local emissions and intra-urban pollution 
variations (Clougherty et al. 2013; Hoek et al. 2008; Michanowicz et al. 2016). LUR normally 
combines distributed pollution measures at multiple sites with a set of potentially predictive 
geographic source covariates, to develop a multiple linear regression model that can be rendered 
in a Geographic Information System (GIS) to estimate air pollution levels at unmeasured areas 
(Wu et al. 2017). Geographic predictors include traffic patterns, surrounding land-use allocations, 
demographic characteristics, green space distribution, and micro climatic conditions (Aguilera et 
al. 2015; Su et al. 2010; Wang et al. 2013; Wu et al. 2017; Shi et al. 2016). Likewise, 
geographically weighted regression (GWR) and geographically and temporally weighted 
regression (GTWR) are also spatial predictive methods for modelling spatial-temporal variation 
of air pollution, and gain more and more attention in recent studies (Chu et al., 2018; Cui et al., 
2019; Guo et al., 2017; Ma et al., 2018).  

In this study, three geospatial-temporal modeling approaches including LUR, GWR), 
and GTWR were used to predict PM10 and O3 exposure. Furthermore, the kriging-based hybrid 
model was integrated with these three geospatial-temporal models, and totally performs six 
models were performed for each pollutant for our comparison. 
 
2. METHODS 
 

The coastal areas of Kaohsiung City, in which several heavy metal industrial parks 
located on, were selected for the experimental study (Fig. 1). Monthly averaged concentrations 
from May 2015 to September 2018 of the two study pollutants, PM10 and O3, were obtained from 
9 specific industrial monitoring stations. There are four steps for data Analysis (Fig. 2). 
Environmental factors such as meteorological factors (relative humidity, and temperature etc.), 

2



co-pollutants (SO2, and PM2.5 etc.), topography (elevation), land-use distributions (residential 
areas, and surrounding greenness etc.), and community emission sources (temple and Chinese 
restaurant) were combined with the recorded concentrations and used as explanatory predictors to 
develop the conventional LUR models; Second, Kriging-based PM10 and O3 estimations were 
further added into the explanatory variables pools for building the kriging-based hybrid models; 
In addition, predictors variables selected by the conventional LUR and hybrid models were 
integrated with GWR and GTWR models to predict PM10 and O3 exposure as well, this earned a 
comparison of six models. In the final step, all models were used to illustrate the spatial variability 
of PM10 and O3..  

 

 
Fig. 1. Study area 
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Fig. 2. Study flowchart 
 

RESULTS 
    The results (Table 3) showed that, integrating the GTWR and predictor variables selected by 
kriging-based hybrid models have the greatest performances compared to LUR, GWR, and the 
combination of both with kriging-based hybrid model. R2 obtained from the GTWR coupled with 
kriging-based hybrid models for PM10 and O3 was 0.96 and 0.92, respectively. Of all variables 
used, wind speed, pure residential area, manufacturing, park; rain-ed crop, orchard; and forest 
land were important predictors for PM10. Whereas, wind direction, industrial area, dry crop, and 
orchard were variables selected to predict O3 (Table 2; Table 3). Then, estimating PM10 and O3 
concentration surfaces predicted by these 6 models. They all showed that located in the crowded 
and bustling place experienced higher PM10 levels, and O3 concentration is higher near farmland 
(Fig. 3; Fig. 4).  
 
Table 3. All model results for PM10 

Variable 
LUR Model LUR Model + GWR 

LUR Model + 
GTWR 

Coefficient Coefficient (Median) 
Coefficient 
(Median) 

(Intercept) +16.19*** -0.51 -2.72 
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*p<0.05; **p<0.01; ***p<0.001 

NO2 +3.13*** 3.34 +3.35 
Rainfall -0.39*** -0.47 -0.47 

Wind speed -8.03*** -2.14 -0.94 
Fall +3.22*** +4.44 +4.28 

Pure residential 
area 500m 

+9.08×10-3** +0.02 +0.01 

Manufacturing 

1250m 
+5.99×10-3*** +7.71×10-3 +7.17×10-3 

Funeral facility 
nearest distance 

-7.29×10-4 -7.46×10-4 -9.19×10-4 

Park250m -0.02** -0.03 -7.03×10-3 
Park2500m -0.20*** -0.14 -0.16 

Rain-ed crop150m +7.53×10-3* +7.59×10-3 +0.01 
Orchard1250m +0.02** +0.02 +0.02 

All farmland50m +6.84×10-3** +3.88×10-3 +5.80×10-3 
Forest land4000m -0.04*** -0.03 -0.03 

Model 
Performance 

R2 = 0.89 
ADJ R2 = 0.89  
RMSE = 7.29 

R2 = 0.9 
ADJ R2 = 0.9  

R2 = 0.91 
ADJ R2 = 0.9  

Variable 
Hybrid Model 

Hybrid Model + 
GWR 

Hybrid Model + 
GTWR 

Coefficient Coefficient (Median) 
Coefficient 
(Median) 

( Intercept ) +1.55 +5.69 -6.23 
PM10 

(Kriging-based) 
+0.97*** +0.99 +0.99 

Wind speed -3.75*** -0.93 -0.22 
Pure residential 

area 500m 
+0.02*** +0.02 +0.01 

Manufacturing 

1250m 
+7.53×10-3*** +8.30×10-3 +7.42×10-3 

Park 2500m -0.03* -0.02 -0.06 
Rain-ed crop 150m +0.01*** +0.01 +0.01 

Orchard 1250m +0.03*** +0.03 +0.04 
Forest land 4000m -0.02*** -0.02 -0.03 

Model 
Performance 

R2 = 0.95 
ADJ R2 = 0.95  
RMSE = 5.2 

R2 = 0.94 
ADJ R2 = 0.94 

R2 = 0.96 
ADJ R2 = 0.96 
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Table 3. All model results for O3 

 
  

Variable 
LUR Model GWR GTWR 

Coefficient 
Coefficient 
(Median) 

Coefficient 
(Median) 

( Intercept ) -73.71 -148.51 -2.34 
Relative humidity -0.45*** -0.34 -0.49 

Atmospheric pressure +0.13* +0.20 +0.05 
Wind direction -0.02*** -0.02 -0.02 

Fall +8.23*** +8.76 +7.56 
Industrial area nearest 

distance 
+1.11×10-3*** +1.03×10-3 +7.86×10-4 

Dry crop150m +0.01*** +0.01 +0.01 
Orchard50m +7.22×10-3** +7.61×10-3 . 

Orchard1000m -0.03*** -0.03 -0.02 
NDVImean5000m +8.74×10-4** +1.10×10-3 +1.27×10-3 

Model Performance 
R2 = 0.42 

ADJ R2 = 0.41  
RMSE = 5.11 

R2 = 0.44 
ADJ R2 = 0.42  

R2 = 0.57 
ADJ R2 = 0.57  

Variable 
Hybrid Model GWR GTWR 

Coefficient Coefficient 
(Median) 

Coefficient 
(Median) 

( Intercept ) +1.39** +0.68 -0.07 
O3 

(Kriging-based ) 
+0.98*** +0.99 +0.99 

Wind direction -0.01*** -8.65×10-3 -5.39×10-3 
Industrial area nearest 

distance 
+0.24×10-3*** +1.29×10-3 +1.26×10-3 

Dry crop150m +8.50×10-3*** +9.69×10-3 +8.19×10-3 
Orchard50m +8.64×10-3*** +9.18×10-3 . 

Orchard1000m -0.03*** -0.03 -0.02 

Model Performance 
R2 = 0.87 

ADJ R2 = 0.87  
RMSE = 2.4 

R2 = 0.87 
ADJ R2 = 0.87 

R2 = 0.92 
ADJ R2 = 0.92 
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Fig. 3. Averaged PM10 concentration surfaces predicted by the all models 

 

 
Fig. 4. Averaged O3 concentration surfaces predicted by the all models 

 
3. CONCLUSION 
 
    The estimated R2 assured the robustness of the performance of integrated GTWR and 
kriging-based hybrid models on predicting temporal-spatial variability of PM10 and O3 in this 
study. 
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