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ABSTRACT: An approach of linking satellite imagery and a crop model can allow reproducing 
geospatial variation in crop productivity efficiently and conveniently. This methodology could be 
a useful means of responding to ever-increasing food crop demand and managing its production. 
This study aims to simulate rice yields with geographical changes based on the Communication, 
Ocean, and Meteorological Satellite (COMS) data incorporated into the GRAMI-rice model in 
most continental areas of Northeast Asia of interest from 2011 to 2014. The COMS consists of 
two imager payloads, the Geostationary Ocean Color Imager (GOCI) and the Meteorology Imager 
(MI), from which surface reflectance and solar radiation were obtained to use as input variables of 
the model. The GOCI imagery has an advantage of reducing a cloud effect in comparison with any 
other images from polar orbit satellites, owing to being obtained through frequent observations, 
i.e., eight times a day. We also used Local Data Assimilation and Prediction System (LDAPS) and
Shuttle Radar Topography Mission (STRM) Digital Elevation Model (DEM) data to acquire air
temperature and geographic information such as an elevation and a surface slope. Before
simulating rice yields, we first performed a classification of paddy fields and estimation of
transplanting dates using time-series of spectral indices and geographical characteristics of rice
cultivation. After that, the model evaluation that can reflect regional characteristics of the rice
cultivars and farming practices was performed and compared with county-level statistical yield
data of the study areas. The overall accuracy and the Kappa coefficient of the classified paddy
fields were 78.8 % and 51.2 %, respectively. The root mean square error (RMSE), Nash-Sutcliffe
efficiencies (NSE), and p-values of two-sample t-tests between observed and simulate rice yields
ranged from 0.673 to 0.767 t ha-1, 0.108 to 0.478, and 0.130 to 0.894, respectively.

1. Introduction

Rice (Oryza sativa) is one of the major staple crops, which more than half of the world’s

population consumes. Especially, over 90 % of the world’s rice has been cultivated in Asia

(MacLean et al., 2013). Monitoring of rice production for future food security is an important

activity in the current situation in which the population is steadily growing. Satellite imagery has

been employed due to its convenience and efficiency to monitor rice productivity in a broad area

(Jeong et al., 2018). The empirical crop model is one of the earliest, easily, and more practical

modeling approaches, but it is only available in limited areas and environments where it was

developed (Doraiswamy and Cook, 1995; Reeves et al., 2005). Meanwhile, using process-based

crop models can provide opportunity to obtain continuous information on crop growth and

development based on crop biophysical processes (Ahuja et al., 2000; Hodson and White, 2010).

However, since a considerable number of inputs is required, spatial monitoring for a broad area is

challenging unless the various spatial inputs required by the crop model are efficiently comprised.

In this study, we simulated rice yields by linking the Geostationary Ocean Color Imager (GOCI)

and process-based GRAMI-rice model in Northeast Asia from 2011 to 2014. The sub-objectives

of the study are to (1) detect the spatial distribution of rice fields, (2) perform regional

parametrization of the GRAMI model, and (3) validate the classified paddy fields and simulated

rice yields.
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2. Data and methods 

 

2.1 Study area 
 

 

Figure 1. Study area for the simulation and spatial projection of rice yield. The red and blue stars 

indicate locations for calibration and validation, respectively, of the crop model applied in counties 

(provinces in the case of North Korea and China) where rice is primarily cultivated.  

 

The study area was limited to the GOCI entire disk area covering all of the nations of South and 

North Korea, Japan, and the northeastern (NE) parts of China (Figure 1). The NE China is a granary 

zone that mainly includes important plains such as Sanjiang, Songnen, and Liaohe (Dong et al., 

2016). The study regions vary from a cold temperate monsoon climate in the NE China to a 

subtropical monsoon climate in southern Japan (Peel et al., 2007). 

 

2.2 Data 

 

COMS 

The Communication, Ocean, and Meteorological Satellite (COMS) was launched on June 27, 

2010 by the Korea Aerospace Research Institute. In this study, vegetation index and solar 

insolation data used as input variables to the GRAMI model were obtained from the GOCI and 

Meterological Imager (MI) sensors of COMS, respectively. Surface reflectance from GOCI in 

eight multi-spectral bands rangs from visible to near-infrared wavelengths with a spatial resolution 

of 500 m, obtained at every hour from 09:00 to 16:00 KST. The reliable reflectance was computed 

according to an atmospheric correction process using the second simulation of the satellite signal 

in the solar spectrum (6S) model and a semi-empirical bidirectional reflectance distribution 

function to correct the surface anisotropy effects. Daily solar insolation with a spatial resolution of 

1 km was acquired from the COMS MI data using the Kawamura physical model (Kawamura et 

al., 1998) modified by Yeom et al., 2016.  
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MODIS 

MODIS MYD09A1 surface reflectance data from the Aqua satellite 

(https://ladsweb.modaps.eosdis.nasa.gov/) were used together with the GOCI data to detect the 

spatial distribution of paddy fields. Adequate reflectance data with a spatial resolution of 500 m 

were selected about at an eight day interval considering the effects of atmospheric water vapor and 

clouds. Simple linear interpolation was adopted to reduce a cloud contamination effect during the 

crop growing season utilizing the cloud information data from quality control flags, which  is 

attributed to the typical monsoonal cloudy conditions. 

 

RDAPS and SRTM DEM 

The spatial temperature data with a spatial resolution of 12 km were obtained from the Regional 

Data Assimilation and Prediction System (RDAPS) based on the fifth-generation Mesoscale 

Model (Grell et al., 1994) provided by the Korea Meteorological Administration. Digital elevation 

map (DEM) data were obtained from the highest-resolution digital topographic database of the 

Earth, which was generated by the Shuttle Radar Topography Mission (SRTM) model of United 

States National Aeronautics and Space Administration (NASA). The database provides a world 

DEM with a spatial resolution of 90 m based on Interferometric Synthetic Aperture Radar data 

(Rabus et al., 2003). In this study, surface elevation and slope were calculated from the DEM data. 

 

Land cover maps 

We obtained high-spatial-resolution land cover maps of South Korea and Japan produced in 2013 

and 2014, respectively. These maps were used to determine the threshold values for detection of 

paddy fields and validate the classified paddy fields. The maps were provided by the 

Environmental Geographic Information Service (EGIS) of the Korea Ministry of Environment 

(KME) (https://egis.me.go.kr) and by the Earth Observation Research Center (EORC) of the Japan 

Aerospace Exploration Agency (JAXA) (https://www.eorc.jaxa.jp). In the case of NE China and 

North Korea, it was assumed to have the same characteristics as South Korea and Japan because 

of the inaccessibility of official national land cover maps. 

 

2.3 Methods 

 

Rice classification 

Unlike other staple crops, paddy rice has a unique characteristic of growing on wetlands. On the 

basis of this characteristic, Xiao et al. (2005) proposed a simple condition to detect the irrigation 

water signal using the interrelationship of normalized difference vegetation index (NDVI), land 

surface water index (LSWI), and the threshold (T) of the LSWI, which is LSWI + T ≥ NDVI. In 

addition, several thresholds related to the characteristics of rice cultivation were used as follows: 

an altitude and a surface slope, the maximum and minimum NDVIs, and an NDVI increase rate 

with a scale factor of 1,000, which was calculated from values between the minimum and 

maximum NDVIs. 

 

GRAMI-rice model 

GRAMI was initially designed to receive remote sensing data as an input variable to obtain a 

mathematical agreement between simulation and measurement based on the “within-season” 

calibration procedure (Maas, 1993). The model includes four main crop growth processes: (1) 

calculation of growing degree days (GDD) using daily mean temperatures and a base temperature of 

rice, (2) determination of the absorption of daily incident radiation energy by leaves, (3) computing 

new dry mass produced by the rice canopy, and (4) determination of LAI partitioning from a new 

dry mass. More details can be referenced from Ko et al. (2015) and Jeong et al. (2018). 
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3. Results and discussion 

3.1 Classification of paddy fields  
The threshold values were determined based on compositing the training dataset (75,000 paddy 

and 150,000 non-paddy pixels), as follows: altitude = 800 m; surface slope = 7º; maximum and 

minimum NDVIs of 0.43 and 0.42; an NDVI increase rate of 2.0; and a T value of 0.17. Following 

application of these thresholds to the validation dataset (25,000 paddy and 50,000 non-paddy 

pixels), the overall accuracy and the Kappa coefficient of detected paddy fields were 78.8 % and 

51.2 %, respectively (Table 1). The user’s accuracy values for the paddy and non-paddy fields 

were 69.7 % and 82.7 %, having the producer’s accuracy values as 64.1 % and 86.1 %, 

respectively (Table 1). 

 

Table 1. Error matrix to validate the spatial distribution of classified paddy fields from 

Geostationary Ocean Color Imager (GOCI) and Moderated Resolution Imaging Spectroradiometer 

(MODIS) data for South Korea in 2013 and Japan in 2014. 

  Reference 

User’s accuracy (%) 

  Paddy Non-paddy Total 

Classification 

Paddy 16,021 6,953 22,974 69.7 

Non-paddy 8,979 43,047 52,026 82.7 

Total 25,000 50,000 75,000  

Producer’s accuracy (%) 64.1 86.1   

Overall accuracy = 78.8%, Kappa coefficient = 51.2% 

 

The classification approach used in this study has been widely applied to detect the distribution of 

paddy fields, irrigated areas, or flooding areas based on optical satellite imagery (Xiao et al, 2005; 

Peng et al., 2011). The concept is a simple and clear logic that reflects the spectral time series for 

characteristics of the paddy fields. The study results have shown reliable analytical indices, 

meaning that the methodology is highly expandable. Meanwhile, the T value of the LSWI used to 

increase the LSWI’s sensitivity to irrigation water can vary depending on the characteristics of the 

land covers. This variability can lead to potential errors in case of using other satellite imagery or 

when targeting different regions. Therefore, it is necessary to determine the T value carefully. We 

consider that if variable T values can be applied according to the characteristics of land covers, 

more reliable classification can be obtained (Jeong et al., 2012). 

 

3.2 Simulation of rice yields 

Simulated rice yields using GOCI images and the GRAMI-rice model were compared to the 

reported regional rice yields. The comparison analysis results showed a significant agreement 

range in most study areas. The root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), 

and p values ranged from 0.620 to 0.676 t ha-1, 0.108 to 0.660, and 0.130 to 0.953, respectively 

(Table 2 and Figure 2). In the spatial distribution of the simulated rice yields (Figure 3), the 

interannual variation in North Korea was found to be higher than that in the other countries. We 

consider that this tendency is attributable to the poor irrigation infrastructures in the country. Rice 

yields were similar between South Korea and NE China, showing somewhat lower yields in 

Japan. It is considered that this difference is related with rice varieties and factors to focus on rice 

cultivation. Rice in South Korea and China tends to be cultivated to increase yield through an 

intensive management practice applying more nitrogen fertilizers than that in Japan where rice 

cultivation is practiced with a focus on quality rather than yield (Ko et al., 2014). 4



Table 2. Root mean square errors (RMSE), Nash-Sutcliffe efficiencies (NSE), and p values of 

two-sample t-tests between observed and simulated rice yields in 54 counties (or provinces) of 

interest in Northeast Asia from 2011 to 2014.  

Year Observation Simulation RMSE NSE t test 

- -------------------- t ha-1 -------------------- - --- p --- 

2011 6.02 6.10 0.673 0.478  0.683 

2012 5.98 5.82 0.684 0.286 0.314 

2013 6.24 6.27 0.685 0.353 0.894 

2014 6.45 6.16 0.767 0.108 0.130 

 

We consider that our results are comparable with those of earlier studies conducted using the 

GRAMI model (Jeong et al., 2018; Yeom et al., 2018) even though this study was performed in a 

wider area. Also, similar reliable results were obtained from other previous studies that employed 

different crop models to simulate rice yields based on coarse spatial resolution images such as 

MODIS (Tomar et al., 2014; Son et al., 2014). While the GOCI is limited to northeast Asia in the 

study area, it allows to obtain satellite images with a stable time series. When other satellite 

images are applicable to simulate more reliable rice yield using the GRAMI model for a wider 

area, much more efforts are needed in image processing such as atmospheric correction or gap-

filling due to mainly cloud contamination since the model is dependent on remote sensing data. 

However, the GRAMI model can be applied to any areas of interest on the Earth's surface 

depending on the availability of reliable satellite images. 

 

 

 
Figure 2. Comparisons of observed and simulated rice yields (t ha-1) for 54 validation counties (or 

provinces) in Northeast Asia from 2011 to 2014. The bold line is 1:1 lines. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 3. Spatial distribution of simulated rice yields in Northeast Asia from 2011 to 2014 (a–d, 

respectively) based on Communication, Ocean, and Meteorology Satellite (COMS) images and 

the GRAMI-rice model. 

 

4. Conclusion 

In this study, rice yields were successfully simulated using GOCI images and the GRAMI-rice 

model in North and South Korea, Japan, and NE China from 2011 to 2014. The overall accuracy 

between simulation and observation was in a significant agreement range in a county (or province) 

scale. Our results showed the possibility of obtaining reliable crop yield information by combining 

the process-based crop model and geostationary satellite images. Although we only simulated just 

rice yield in this study, continuous and diverse crop growth information can be obtained spatially 

due to the process-based crop model feature. We believe that the whole methodologies employed 

in this study may help to manage staple food crop production through understanding the current 

circumstances of crop productivity.  
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