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ABSTRACT: The mountainous habitats are one of the climate sensitive zones. In the mountainous regions, 

distinct altitudinal and topographical patterns of vegetation are formed by the interaction of varying environmental 

factors such as soil composition, temperature, precipitation, humidity, and solar radiation. Satellite remote sensing 

is a suitable technology for wide area monitoring of vegetation patterns to better understand the climatic response 

of vegetation. The major objectives of this research were to assess the potential of machine learning technique to 

explain the altitudinal and topographic response of mountainous vegetation patterns, and to map major vegetation 

types in the Hakkoda Mountains. The Hakkoda Mountains represent a typical mountainous ecosystem in the cool 

temperate climatic region of north eastern Japan. The dominant plants of the region include Fagus crenata, 
Quercus crispula, Betula ermanii, Abies mariesii, and Pinus pumila. All Landsat 8 data of 2018 available for the 

study area were processed (cloud masking, mosaicking, multi-temporal compositing) and large number of spectral 

and spectral-indices features were generated. We also generated the topographical features (elevation, slope, 

aspect, and hill shade) from the Shuttle Radar Topography Mission (SRTM) product. Random Forests algorithm 

was employed for assessing feature importance and classification of vegetation types. The results were validated 

with the ground truth data prepared in the research. The altitudinal and topographical response of the vegetation 

patterns has been discussed, and vegetation map of the Hakkoda Mountains has been presented. The methodology 

described in the research is expected to be applicable in understanding mountainous vegetation patterns of other 

regions as well. 

1. INTRODUCTION

The mountainous habitats are one of the climate sensitive zones. Satellite remote sensing is a suitable technology for 

wide area monitoring of vegetation patterns and better understanding the climatic response of vegetation.  

Landsat 8 is one of the satellites appropriate for this purpose. Landsat 8 has been collecting global scale, 15-100m 

spatial resolution, multi-spectral images with a standard 16-day repeat cycle since 2013 (Irons et al., 2012; Roy et al., 

2014). Landsat 8 consists of two sensors, Operational Land Imager (OLI) and Thermal InfraRed Sensor (TIRS); and 

collects image data for nine visible-shortwave bands and two thermal bands (www1). The geo-registration of Tier 1 

scenes is consistent within prescribed image-to-image tolerances of ≦ 12-meter radial root mean square error 
(www1). The list of Landsat 8 (OLI and TIRS) bands relevant to vegetation mapping has been shown in Table 1. 

Table 1. List of Landsat 8 (OLI and TIRS) bands relevant to land cover and vegetation mapping. 

Bands Wavelength 

(micrometers) 

Resolution 

(meters) 

Band 2 - Blue 0.45-0.51 30 

Band 3 - Green 0.53-0.59 30 

Band 4 - Red 0.64-0.67 30 

Band 5 - Near Infrared (NIR) 0.85-0.88 30 

Band 6 - Mid Infrared (MIR) 1.57-1.65 30 

Band 7 – Shortwave Infrared (SWIR) 2.11-2.29 30 
Band 8 - Panchromatic 0.50-0.68 15 

Band 11 - Thermal Infrared (TIRS) 2 11.50-12.51 100 

The spectral indices, arithmetic combination of the spectral bands, are also crucial to the vegetation mapping. A list 

of multispectral indices relevant to vegetation mapping has been shown in Table 2.  

Table 2. List of multispectral indices relevant to vegetation mapping. 

Multispectral indices References 
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Green Red Vegetation Index (GRVI) Falkowski et al., 2005 

Normalized Difference Vegetation Index (NDVI) Rouse et al., 1974 

Land Surface Water Index (LSWI) Xiao et al., 2004 

Normalized Difference Built-up Index (NDBI) Zha et al., 2003 

Normalized Difference Snow Index (NDSI) Hall et al., 2002 

Normalized Difference Water Index (NDWI) McFeeters, 1996 

 

In mountainous regions, distinct altitudinal and topographical patterns of vegetation are formed by the interaction of 

varying environmental factors such as soil composition, temperature, precipitation, humidity, and solar radiation. The 
zonation of vegetation with respect to altitudinal and topographical gradients has long been recognized (Ohsawa, 

1984; Sakai and Ohsawa, 1994). Therefore, it is interesting to know to what extent the altitudinal and topographic 

variation of the vegetation patterns can be explained by machine learning techniques. The major objectives of this 

research were to quantitatively assess the potential of machine learning technique to explain the altitudinal and 

topographic response of mountainous vegetation patterns, and to map major vegetation types using satellite data. 

 

2. MATERIALS AND METHODS 

2.1 Study Area 
 

This research was conducted in the Hakkoda Mountains, which represent a typical mountainous ecosystem in the 

cool temperate climatic region of north eastern Japan. The dominant plants of the region include Fagus crenata, 

Quercus crispula, Betula ermanii, Abies mariesii, and Pinus pumila. The location of the study area is shown in Figure 

1.  

 

 
Figure 1. Location of the study area, the Hakkoda Mountains, shown by red polygon 

 

The vegetation patterns in one of the Hakkoda Mountains is shown in Figure 2. 
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Figure 2. One of the Hakkoda Mountains showing different patterns of vegetation 

 

2.2 Preparation of ground truth data 
 

We collected ground truth data with reference to vegetation survey map (www2), Google Earth (www3), and field 

survey. The distribution of ground truth data in the study area is shown in Figure 3. For each vegetation class, 250 

sample points were prepared as the ground truth data. 

 

 
Figure 3. Distribution of ground truth data (prepared in the research) over the study area 

 

2.3 Processing of satellite data 
 

We used all Landsat-8 scenes (in total 56) under the Tier 1 collections available for the study area in 2018. Landsat-

8 data were converted into top-of-atmosphere (TOA) spectral reflectance using the rescaling coefficients. The cloud 

cover of the scenes varied from 4.85 – 93.47%. The clouds were removed by using separate quality assessment (QA) 

band information. The spectral bands (Table 1) were extracted and the spectral indices (Table 2) were calculated. The 
spectral/spectral-indices images were composited using percentile based method (Sharma et al., 2017).  Table 4 shows 

the list of Landsat 8 features generated in the research. 
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Table 4. Description of Landsat 8 features (spectral and spectral-indices) at different percentiles (p) generated for the 

research.  

 

Landsat 8 features 

blue p0 green p90 nir p70 swir p50 tir p30 grvi p10 ndwi p100 ndbi p80 

blue p10 green p100 nir p80 swir p60 tir p40 grvi p20 lswi p0 ndbi p90 

blue p20 red p0 nir p90 swir p70 tir p50 grvi p30 lswi p10 ndbi p100 

blue p30 red p10 nir p100 swir p80 tir p60 grvi p40 lswi p20 ndsi p0 

blue p40 red p20 mir p0 swir p90 tir p70 grvi p50 lswi p30 ndsi p10 

blue p50 red p30 mir p10 swir p100 tir p80 grvi p60 lswi p40 ndsi p20 

blue p60 red p40 mir p20 pan p0 tir p90 grvi p70 lswi p50 ndsi p30 

blue p70 red p50 mir p30 pan p10 tir p100 grvi p80 lswi p60 ndsi p40 

blue p80 red p60 mir p40 pan p20 ndvi p0 grvi p90 lswi p70 ndsi p50 

blue p90 red p70 mir p50 pan p30 ndvi p10 grvi p100 lswi p80 ndsi p60 

blue p100 red p80 mir p60 pan p40 ndvi p20 ndwi p0 lswi p90 ndsi p70 

green p0 red p90 mir p70 pan p50 ndvi p30 ndwi p10 lswi p100 ndsi p80 

green p10 red p100 mir p80 pan p60 ndvi p40 ndwi p20 ndbi p0 ndsi p90 

green p20 nir p0 mir p90 pan p70 ndvi p50 ndwi p30 ndbi p10 ndsi p100 

green p30 nir p10 mir p100 pan p80 ndvi p60 ndwi p40 ndbi p20  

green p40 nir p20 swir p0 pan p90 ndvi p70 ndwi p50 ndbi p30  

green p50 nir p30 swir p10 pan p100 ndvi p80 ndwi p60 ndbi p40  

green p60 nir p40 swir p20 tir p0 ndvi p90 ndwi p70 ndbi p50  

green p70 nir p50 swir p30 tir p10 ndvi p100 ndwi p80 ndbi p60  

green p80 nir p60 swir p40 tir p20 grvi p0 ndwi p90 ndbi p70  
 
 

We used Shuttle Radar Topography Mission (SRTM) V3 product at a resolution of 30m (Farr et al., 2007) for 

generating the topographic features (elevation, slope, aspect, and hill shade).  

 

Altogether, 158 features (154 from Landsat 8 and 4 from SRTM) were generated. 

 

2.4 Machine learning 

 

We employed Random Forests classifier for the supervised classification of the Landsat 8 and Topographic features 

with the support of ground truth data prepared in the research. Random forests are the random decision forests that 

operates by constructing a multitude of decision trees to overcome overfitting problem of the decision trees (Ho, 

1995; Breiman, 2001). The feature importance were identified with inbuilt feature importance module available in 
the Random Forests algorithm (Breiman, 2001). Out of 250 ground truth points, 150 points were used as the training 

data, whereas remaining 100 points were used as the validation data. The results were evaluated by feature 

importance, confusion matrix, overall accuracy, and kappa coefficient obtained with the validation data.  

 

3. RESULTS 

 

The importance of different set of features (Landsat 8, Topographic, and Landsat 8 + Topographic) obtained from the 

Random Forests classifier are shown in Figures 4-6. Overall, the topographic (elevation) feature was found to be most 

determining factor for explaining the vegetation patterns in the study area (Figure 6). Among the topographic features, 

aspect was found to be second most explanatory factor after the elevation (Figure 5). Both the spectral and spectral-

indices were found to be important for vegetation classification (Figure 4). 
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Figure 4. Importance of Landsat 8 features 

 

 
Figure 5. Importance of Topographic features 
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Figure 6. Importance of Landsat 8 + Topographic features 

 

The validation results also showed importance (Overall accuracy = 0.72; Kappa = 0.69) of the topographic features 

for classification of vegetation types in the study area (Figure 7). Moreover, the combination of topographic features 

with the Landsat 8 features (Figure 9) provided better accuracy (Overall accuracy = 0.91; Kappa = 0.90) than using 

Landsat 8 features (Figure 8) alone (Overall accuracy = 0.89; Kappa = 0.88). 

 

 
Figure 7. Validation results using Topographic features 
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Figure 8. Validation results using Landsat 8 features 

 

 
 

Figure 9. Validation results using Landsat 8 + Topographic features 

 

The vegetation map of the Hakkoda Mountains produced by using Landsat 8 and SRTM data is shown in Figure 10. 

The large number of multi-temporal (spectral and spectral-indices) and topographic (elevation, aspect, slope and hill 

shade) features has resulted vegetation map of high accuracy in the research. 
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Figure 10. Vegetation map of the study area 
 

4. CONCLUSION 
 

In this research, the machine learning technique (Random Forests classifier) showed the potential of explaining the 

altitudinal and topographic response of vegetation patterns in Hakkoda Mountains. The topographic (elevation) 

feature was found to be most determining factor for explaining the vegetation patterns in the study area. We produced 

vegetation map with high accuracy by combining topographic features with Landsat 8 based spectral and spectral-

indices features. The methodology described in the research is expected to be applicable in understanding 

mountainous vegetation patterns of other regions as well. 
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