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Abstract: Leaf chlorophyll content is closely related to plant health and nutritional status. Thus, the accurate and 

efficient estimates of leaf chlorophyll content are important for precision forestry. This study employed hyperspectral 

reflectance, which is robust and nondestructive to derive the leaf chlorophyll content of Moso bamboo. The spectral 

reflectance and chlorophyll content of corresponding leaves in 86 plots were determined by an ASD FieldSpec 4 field 

spectrometer and Thermo Scientific microplate reader, respectively. Correlation analysis was used to determine the 

most sensitive parameters of the original spectral reflectance, first derivative reflectance, spectral parameters, and 

vegetation index. These parameters were then used to construct leaf chlorophyll content model by unary model, 

multivariate linear model, random forest (RF), and support vector machines (SVM). The results indicated that (1) the 

reflectance at 562 nm, the first derivative reflectance at 650 nm, the normalized value of red edge and blue edge areas 

((Sr-Sb)/(Sr+Sb)), and the chlorophyll absorption reflectance index (CARI) had the highest correlation with leaf 

chlorophyll content, respectively; (2) the power function model constructed using R562 nm and the leaf chlorophyll 

content yielded the highest R²amongst 15 unary models. Then, using 562 nm, 650 nm, (Sr-Sb)/(Sr+Sb), and CARI as 

variables, a leaf chlorophyll content inversion model was established using the multivariate linear method, the 

coefficient of determination reached 0.716; RF and SVM, with R²values were 0.870 and 0.763. Among them, RF had 

the best performance. This study demonstrates that RF is the best-fit model for estimating the leaf chlorophyll content 

of Moso bamboo. These results contribute towards the rapid and nondestructive determination of leaf chlorophyll 

content. 

1. INTRODUCTION

Moso bamboo (Phyllostachys pubescens) is an important forest resource, and well known as an economic 

bamboo species with a high annual output of timber, rapid growth, and wide applications. Moreover, it plays an 

important role in the carbon cycle and water conservation. In China, the planted area of Moso bamboo is 

approximately 74% of the total bamboo forest area (Yang et al., 2019; Qin et al., 2017; Li et al., 2019). the threat of 

diseases and insect pests occurs in Moso bamboo growth areas, mostly spread from point to surface, that cause 

economic losses and difficult to control(Huang et al., 2018). Thus, requires to examine and monitor bamboos growth 

is necessary.  

Leaf chlorophyll content is an important indicator of plant photosynthesis, nutritional status, and growth 

position(Sonobe et al., 2017; Yang et al., 2015). Changes in the leaf chlorophyll content are related to environmental 

stress, pests, and diseases(Féret et al., 2017); therefore, accurate estimates of leaf chlorophyll content are highly 

significant for monitoring vegetation growth and nutrients. In crop fields (i.e. corn, wheat, and potato), hyperspectral 

remote sensing has been widely used to monitor and estimate chlorophyll content(Zhao et al., 2013; Kjær et al., 2017; 

Li et al., 2017). Spectral data is also required to obtain vegetation growth information in precision forestry. However, 

field sampling surveys are difficult; specifically, sometimes spectral data is required by erecting towers at different 

heights.  

Leaf chlorophyll content estimation using hyperspectral remote sensing involves both physical and empirical 

models(Sonobe et al., 2017; Zhao et al., 2013). Among existing physical models, the PROSPECT model is a 

commonly used leaf-level radiative transfer model(Sun et al., 2018) that simulates inversion spectra based on the leaf 

and other properties. However, it has some parameters that are difficult to obtain. And, although it is more popular 

for estimating chlorophyll content, it involves certain assumptions in order to simplify the complexities of nature. 

Moreover, it cannot be applied to conifer needle leaves(Sun et al., 2019). Conversely, a large number of studies have 

analyzed the empirical relationship between measured leaf chlorophyll content and spectral features(Richardson et 
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al., 2002; Lausch et al., 2015). There are two commonly used spectral features: one is spectral indices, including the 

spectral reflectance, derivative reflectance, and vegetation index, and the other is the characteristic spectral position 

variable, including the red edge position, etc.(Li et al., 2017; Peng et al., 2018; Zhou et al., 2019). Compared with the 

PROSPECT model, spectral features are convenient and may have general applicability for large-scale 

monitoring(Sonobe et al., 2017). 

Machine learning algorithms (MLAs) represent a new field of model construction, that includes random forest 

(RF), support vector machine (SVM), and artificial neural network (ANN) models. Applications of these models 

include landslide detection(Ghorbanzadeh et al., 2019), forest parameter estimation(Zhao et al., 2019), and so on. 

MLAs have excellent learning and prediction ability in data analysis and can be easily applied to functional regression 

problems(Cooner et al., 2016). Moso bamboo is predominantly distributed in hilly and mountainous areas; therefore, 

it is difficult to detect the leaf chlorophyll content. Moreover, a limited study was carried out to compare MLAs with 

empirical models, which one provides better accuracy in the leaf chlorophyll content evaluation of Moso bamboo.  

Therefore, this study explores the optimal method for estimating the leaf chlorophyll content of Moso bamboo 

using hyperspectral remote sensing. First, we retrieve vegetation indices form hyperspectral data and determine the 

leaf chlorophyll content. Second, we analyze the spectral characteristics of chlorophyll and reveal the hyperspectral 

response of leaf chlorophyll content. Lastly, we develop an inversion model to determine the leaf chlorophyll content 

of Moso bamboo based on different parameters, then select the optimal approach for estimating leaf chlorophyll 

content. 

 

2. MATERIALS AND METHODS 

 

2.1. Study area 

 

The study site is located in Fujian Tianbaoyan National Nature Reserve, Yong'an City, Fujian Province, China 

(117°28'3"~117°35'28"E, 25°50'51"~26°1'20" N) (Fig. 1). Elevations vary from 580 m to 1604.8 m above mean sea 

level. The site is characterized by a subtropical maritime monsoon climate zone with an average annual temperature 

of 15 °C. The average annual precipitation is 2039 mm and concentrated from May- September, and the average 

annual relative humidity is over 80%. A highly intensive plantation of Moso bamboo forest is located in the 

experimental area. The site area is a forest ecological protection zone, which has high scientific research value and a 

forest coverage rate of 96.8%. 

 
Fig. 1. Location of the study site 

 

2.2. Experimental design 

 

The experiment comprises two main parts: (1) measurement of the spectral reflectance and chlorophyll content 

of Moso bamboo and (2) determining the relationship between spectral reflectance and chlorophyll content. To 

measure the spectral characteristics of Moso bamboo leaves, 86 plots were established in Fujian Tianbaoyan National 

Nature Reserve. The size of each plot was 25.8 m × 25.8 m. The reflectance values and leaf chlorophyll content of 

the upper, middle, and lower layers of Moso bamboo canopy were obtained separately. 

 

2.3. Spectral reflectance and chlorophyll content measurement 

 

The spectral reflectance of Moso bamboo was measured from August 15 to September 16, 2018 during on-years 

(years with great shoot production), using a spectrometer (FieldSpec4, Analytical Spectral Devices Inc., USA). The 

spectral range of the spectrometer was 350 nm to 2500 nm, with a spectral resolution of 3 nm between 350 nm and 

1400 nm and 6 nm between 1400 nm and 2100 nm. The reflectance of the blade was measured directly by a 

spectrometer with a built-in halogen tungsten lamp. A standard bamboo plant was cut down in each sample plot and 
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nine leaves were randomly selected from each layer to determine the spectrum. A total of 27 leaves were determined 

for each tree. 

After measuring the spectral reflectance, the leaves were immediately stored in a heat preservation box and 

brought back to the laboratory to determine the chlorophyll content. First, nine leaves of the same layer were cut, and 

0.05 g samples were placed into a centrifugal tube with 8 ml of extract (acetone: anhydrous ethanol = 3:1). Next, the 

centrifugal tube was immersed in a dark environment for 48 h and shaken every 12 h(Wang et al., 2015). After the 

leaves turned white, the absorbance of the chlorophyll solution at 663 nm and 645 nm was measured using a Thermo 

Scientific enzyme-labelling measuring instrument. Each sample was measured three times for leaf chlorophyll 

content. Finally, the chlorophyll content was calculated using 

𝐶𝑡 =
1000(17.18𝐴663 + 17.32𝐴646)𝑉

𝑀⁄      (1) 

where 𝐶𝑡is the fresh leaf chlorophyll content (mg/g), 𝑉 is the total volume of the extract (8 ml), and 𝑀 is the leaf 

extraction amount (0.05 mg). 

 

2.4. Model construction 

 

2.4.1. Data preprocessing 

The data was pre-processed with the ViewSpecPro software of the ASD FieldSpec 4 spectrometer. The mean 

value of nine leaves per layer was used as the leaf reflectance of that layer. 

2.4.2. Selection and construction of chlorophyll-related indicators 

To determine the sensitive band for the leaf chlorophyll content of Moso bamboo, we used SPSS software to 

analyze the correlation between leaf chlorophyll content and original spectral reflectance, first derivative reflectance 

after pretreatment. The most relevant wavelength was selected as the sensitive wavelength for subsequent modeling. 

Among the vegetation indices recorded in the literature(Yang et al., 2015; Zhou et al., 2019; Xue et al., 2009; 

Le Maire et al., 2004), 28 published hyperspectral vegetation indices and ten types of spectral parameter were selected 

for model construction; these parameters included the blue edge amplitude (Db), blue edge position (λb), red valley 

amplitude (Rr), red valley position (λv), red edge amplitude (Dr), red edge position (λr), red edge Area (Sr), blue 

edge area (Sb), red edge area to blue edge area ratio (Sr/Sb), red edge area and blue edge area normalized value ((Sr-

Sb)/(Sr+Sb)). Based on the results of the correlation analysis, the maximum correlation spectral parameter and 

vegetation index were chosen for further analysis. 

2.4.3. Model construction and accuracy evaluation 

253 sample data were obtained and randomly divided into 202 samples for the modeling set and 51 samples for 

the validation set, with a ratio of 4:1. The most relevant correlation of the original spectral reflectance, first derivative 

reflectance, spectral parameters, and vegetation index were selected to construct the chlorophyll inversion model. A 

variate linear model was built using Excel software, and a multivariate linear model was built using SPSS software. 

Random forest (RF) classification and support vector regression (SVR) were performed using Python 3.0 software. 

The coefficient of determination (R2), the root mean square error (RMSE), and the relative error (RE) were used 

to evaluate the accuracy of the inversion models(Li et al., 2017): 

𝑅2 =
∑ (�̂�−�̅�)2𝑛
𝑖=1

∑ (𝑦−�̅�)2𝑛
𝑖=1

         (2) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (�̂� − 𝑦)2𝑛
𝑖=1        (3) 

𝑅𝐸 =
1

𝑛
∑ (

|𝑦
𝛬
−𝑦|

𝑦
× 100%)𝑛

𝑖=1        (4) 

where y is the measured value of the sample, �̂� is the estimated value of the sample, �̅� is the average value 

of the measured sample, and n is the number of samples. The smaller the values of RMSE and RE, the higher 

the accuracy of the model, and the better the correlation between measured and estimated values. 

 

3. RESULTS 

 

3.1. Correlation analysis 

 

3.1.1 Correlation between chlorophyll content, original reflectance, and first derivative reflectance 

The highest correlations between chlorophyll content and original spectral reflectance of Moso bamboo leaves 

were 409-752 nm, 1708-1776 nm and 2270-2450 nm (Fig. 2). The original spectral reflectance for 409-752 nm 

exhibited a highly significant negative correlation with the chlorophyll content (p<0.01). Moreover, significant 

positive correlations were confirmed between chlorophyll content and reflectance values for 1708-1776 nm and 2270-

2450 nm (p<0.05). The highest correlation was obtained at 562 nm (R562 nm), for which the correlation coefficient 

was -0.827. Thus, 562 nm was selected as the independent candidate variable for the modeling parameter. 
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Fig.2 Curve of the correlation coefficient between chlorophyll content and the original spectral reflectance of 

Moso bamboo leaves 

The highest correlation between chlorophyll content and the first derivative reflectance of Moso bamboo leaves 

was predominantly in the visible band (Fig. 3). There was a strong negative correlation for 484-552 nm and 683-718 

nm, and a significant positive correlation for 554-679 nm (p<0.05). The derivative reflectance at DR 650 nm had the 

highest correction with chlorophyll content, with a correlation coefficient of 0.791. Therefore, DR 650 nm was 

selected the modeling parameter for the first derivative reflectance. 

 
Fig.3 Curve of the correlation coefficient between chlorophyll content and the first derivative reflectance of Moso 

bamboo leaves 

3.1.2. Correlation between chlorophyll content and hyperspectral parameters 

The red edge position (λr), red valley position (λv), red valley amplitude (Rr), blue edge position (λb), blue edge 

amplitude (Db), blue edge area (Sb), red edge area to blue edge area ratio (Sr/Sb), and normalized value of red edge 

area and blue edge area ((Sr-Sb)/(Sr+Sb)) exhibited a highly significant relationship with leaf chlorophyll content 

(Table 1). Among them, the correlation coefficient between the normalized value of red edge area and blue edge area 

((Sr-Sb)/(Sr+Sb)) and chlorophyll content was the highest, at 0.740. Conversely, the red edge amplitude (Dr) and red 

edge area (Sr) exhibited no correlation with leaf chlorophyll content. Therefore, we chose the normalized value of 

red edge area and blue edge area ((Sr-Sb)/(Sr+Sb)) as the modeling parameter. 

Table 1 Correlations between chlorophyll content and hyperspectral parameters 

Hyperspectral parameters 
Correlation 

coefficient 

λr 0.458** 

Dr 0.108 

λv -0.651** 

Rr -0.449** 

λb 0.184** 

Db -0.679** 

Sr -0.067 

Sb -0.716** 

Sr/Sb 0.717** 

(Sr-Sb)/(Sr+Sb) 0.740** 

Note: * is a significant level (p < 0.05), **is a highly significant level (p < 0.01). 
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3.1.3. Correlations between chlorophyll and vegetation indices 

Correlation analysis of the hyperspectral vegetation indices and leaf chlorophyll content yielded high Pearson 

correlation values for a majority of the vegetation indices (Table 2). Among them, 25 vegetation indices had highly 

significant correlations with chlorophyll content. The five vegetation indices with the highest correlation with 

chlorophyll content were RVI II, SIPI, CARI, GNDVI, and GNDVI801-550. The correlation between CARI and 

chlorophyll content was the highest, with a correlation coefficient of -0.785. Conversely, VI opt, NDPI, RVSI 

exhibited no correlation with leaf chlorophyll content. Thus, CARI was used as the vegetation index when building 

the model. 

Table 2. Chlorophyll-sensitive vegetation spectral index 

Vegetation indices Algorithm 
Pearson 

correlation 

Optimal vegetation index (VIopt) (1 + 0.45)(𝑅800
2 + 1)/(𝑅670

2 + 0.45) 0.031 

Normalized difference vegetation index 

g-b (NDVI g-b) 
(𝑅575 − 𝑅440)/(𝑅575 + 𝑅440) -0.514** 

Ratio vegetation index Ⅰ (RVI Ⅰ) 𝑅810/𝑅660 0.486** 

Ratio vegetation index Ⅱ (RVI Ⅱ) 𝑅801/𝑅560 0.741** 

Modified chlorophyll absorption 

reflectance index MCARI/MTVI2 

MCARI=𝑅700 − 𝑅670 − 0.2(𝑅700 − 𝑅550)(𝑅700/𝑅670) 
MTVI2=1.5[1.2(𝑅800 − 𝑅550) − 2.5(𝑅670 − 𝑅500)]/
sqrt[2(2𝑅800 + 1) − (6𝑅8000 − 5sqrt(𝑅670)) − 0.5] 

-0.660** 

Doublet canopy nitrogen index (DCNI) (𝑅720 − 𝑅700)/(𝑅700 − 𝑅670)/(𝑅720 − 𝑅670 + 0.03) 0.657** 

Transformation chlorophyll absorption 

reflectance index/Optimized soil-adjusted 

vegetation index (TCARI/OSAVI) 

TCARI=3[𝑅700 − 𝑅670 − 0.2(𝑅700 − 𝑅550)](𝑅720/𝑅670) 
OSAVI=1.16(𝑅800 − 𝑅670)(𝑅800 + 𝑅670 + 0.16) 

-0.505** 

MERIS terrestrial chlorophyll index 

(MTCI) 
(𝑅750 − 𝑅710)/(𝑅710 − 𝑅680) 0.630** 

R-M 𝑅750/𝑅720 − 1 0.594** 

Senescence reflectance index (SRI) 𝑅801/𝑅670 0.390** 

Spectral reflectance index (SR705) 𝑅750/𝑅705 0.615** 

Normalized difference pigment index 

(NDPI) 
(𝑅680 − 𝑅430)/(𝑅680 + 𝑅430) 0.015 

Structure intensive pigment index (SIPI) (𝑅800 − 𝑅445)/(𝑅800 − 𝑅550) -0.741** 

Chlorophyll absorption reflectance index 

(CARI) 

|670𝑎 + 𝑅670 + 𝑏|𝑅700

√𝑎2 + 1 × 𝑅670
 

a=(𝑅700 − 𝑅550)/150，b=𝑅550 − 500𝑎 

-0.785** 

Plant senescence reflectance index 

(PSRI) 
(𝑅680 − 𝑅500)/𝑅750 0.595** 

Vogelmann red edge index (VOGB) (𝑅734 − 𝑅747)/(𝑅715 + 𝑅726) -0.582** 

Vogelmann red edge index (VOGC) (𝑅734 − 𝑅747)/(𝑅715 + 𝑅720) -0.587** 

Red edge NDVI (rNDVI) (𝑅750 − 𝑅705)/(𝑅750 + 𝑅705) 0.598** 

Green normalized difference vegetation 

(GNDVI) 
(𝑅750 − 𝑅550)/(𝑅750 + 𝑅550) 0.712** 

Photochemical reflectance index (PRI) (𝑅531 − 𝑅570)/(𝑅531 + 𝑅570) 0.550** 

Red-edge vegetation stress index (RVSI) (𝑅712 + 𝑅715)/2 − 𝑅732 0.040 

PSND (𝑅800 − 𝑅470)/(𝑅800 + 𝑅470) 0.358** 

PPR (𝑅550 − 𝑅450)/(𝑅550 + 𝑅450) -0.397** 

MSR (
𝑅800
𝑅670

− 1)/𝑠𝑞𝑟𝑡(
𝑅800
𝑅670

+ 1) 0.364** 

Normalized difference vegetation 

index800-680 (NDVI800-680) 
(𝑅800 − 𝑅680)/(𝑅800 + 𝑅680) 0.233** 

Normalized difference vegetation 

index503-483 (NDVI503-483) 
(𝑅503 − 𝑅483)/(𝑅503 + 𝑅483) -0.517** 

Normalized difference vegetation 

index801-550 (NDVI801-550) 
(𝑅801 − 𝑅550)/(𝑅801 + 𝑅550) 0.729** 

The reflectance value at wavelength (nm). 

 

3.2. Modeling results 

 

3.2.1. Results of the unary model based on different parameters 

The inversion models of R562 nm, DR650 nm, (Sr-Sb)/ (Sr+Sb), and CARI with leaf chlorophyll content were 

constructed using monadic linear, quadratic curve, exponential, and power function models, respectively. According 

to Table 3, the power coefficient model of R562 nm showed the best fitting effect, with the highest coefficient of 

determination (R2=0.739, RMSE=0.431, RE=10.93%). The model inversion accuracy was similar for DR650 nm and 

CARI, regardless of the type of model (the power function model of DR650 nm was excluded). And the coefficient 
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of determination was 0.600-0.700, which was lower than the model constructed using R562 nm. The four models 

using (Sr-Sb)/ (Sr+Sb) as parameter had the lowest inversion accuracy, all of which were less than 0.5. 

Table 3. Construction and accuracy evaluation of unary model 

Parameters Model Regression equation 

Coefficient of 

determination 

(R²) 

Root mean 

square error 

(RMSE) 

Relative error 

(RE) /% 

R562 

Monadic linear 

model 
y = -44.67x + 9.5969 0.703 0.419 10.68% 

Quadratic curve 

model 

y = 212.72x2 - 101.56x + 

13.352 
0.703 0.420 10.64% 

Exponential model y = 18.971e-12.58x 0.718 0.422 10.62% 

Power function 

model 
y = 0.1252x-1.654 0.739 0.431 10.96% 

DR650  

Monadic linear 

model 
y = 5323.1x + 6.3045 0.627 0.496 12.68% 

Quadratic curve 

model 

y = -632541x2 + 4688.8x + 

6.155 
0.636 0.498 12.72% 

Exponential model y = 7.5355e1507.3x 0.607 0.500 12.29% 

Power function 

model 
The first order differential is negative, so there is no power function model. 

(Sr-Sb)/ 

(Sr+Sb) 

Monadic linear 

model 
y = 28.501x - 20.612 0.457 0.527 12.43% 

Quadratic curve 

model 

y = -29.209x2 + 78.236x - 

41.77 
0.471 0.530 12.56% 

Exponential model y = 0.0037e8.0822x 0.443 0.520 11.98% 

Power function 

model 
y = 10.802x6.8907 0.442 0.526 11.85% 

CARI 

Monadic linear 

model 
y = -44.938x + 8.3954 0.671 0.464 12.12% 

Quadratic curve 

model 

y = 266.13x2 - 101.55x + 

11.351 
0.664 0.457 11.72% 

Exponential model y = 13.481e-12.63x 0.672 0.459 11.54% 

Power function 

model 
y = 0.1843x-1.311 0.694 0.463 11.64% 

3.2.2. Results of other models 

Figure 4 shows the relationships between measured and predicted chlorophyll content. The coefficient of 

determination (R2) for the multivariate liner model constructed using 562 nm, 650 nm, (Sr-Sb)/(Sr+Sb), and CARI 

as parameters was 0.716, RMSE was 0.412, and RE was 8.71%. The model yielded the following estimation formula: 

y=-26.278*R562+1854.277*DR650+1.481*(Sr-Sb)/(Sr+Sb)-3.966* CARI+7.228 

The RF algorithm and SVM were constructed using Python. The R2 value of the RF model and radial basis 

kernel function SVM model were 0.870 (RMSE=0.378, RE =8.21% and 0.763 (RMSE=0.372, RE =8.44%) (Fig. 4). 

A comparison of the measured and simulated datasets revealed that RF can more accurately derive the leaf chlorophyll 

content of Moso bamboo.  

Except for the exponential model and power function model constructed using the original spectral reflectance, 

R562 nm, the R2 of the multivariate model constructed by multivariate linear, RF, and SVM was greater than 0.7, 

which was superior to the unary model constructed using the original spectral reflectance, first derivative reflectance, 

spectral parameters, and vegetation index. Moreover, the RMSE value was lower than that for the unary model. 
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Fig.4 Verification of measured and predicted chlorophyll content by the multivariate liner model (a), random forest 

model (b), and radial basis kernel function support vector machine model (c) 

 

4. DISCUSSION 

 

4.1 Spectral characteristics of Moso bamboo 

 

Moso bamboo exhibits dynamic growth changes. At different bamboo ages, the leaf chlorophyll content displays 

substantial differences. Additionally, Moso bamboo is typified by high shoot production during on-years and the 

growth of whips and replacement of bamboo leaves during off-years. Guan et al.(2012) indicated that on-year bamboo 

presented “two humps” in spring and summer (Guan et al., 2012). Although our study did not reveal this phenomenon, 

it is consistent with other research indicating that the visible and near-infrared spectrum is more sensitive to leaf 

chlorophyll content(Huang et al., 2018; Blackburn et al., 1998). There are three spectral reflectance bands that are 

sensitive to chlorophyll content: 409-752 nm, 1708-1776 nm, and 227-2450 nm. Among them, the correlation 

between spectral reflectance and chlorophyll content is the highest in the visible band, reaching a maximum at 562 

nm. 

 

4.2. Effect of model development 

 

Our study divided the bamboo canopy into upper, middle, and lower layers, and measured the corresponding 

leaf chlorophyll content. It can reasonable to deduce Figure 5 indicates that the chlorophyll content of Moso bamboo 

leaves varied among different canopy layers. Compared with other research on plant leaves (e.g. maize and rice)( Kjær 

et al., 2017), our sampling method is more representative and improves the estimation accuracy of the leaf chlorophyll 

content of Moso bamboo. 

 

Subsequently, due to the influence of the spectrometer itself and the moisture in the atmosphere, the measured 

spectral curve of vegetation will produce irregular vibrations as the wavelength increases(Wang et al., 2018). This 

noise will affect the accuracy of vegetation information extraction. In this study, a portable system with Field Spec4 

was used for spectral determination, and a built-in light source was used as the light source. This can effectively 

reduce the effect of interference from the environment and changes in light under the forest on the spectral reflectance 

measurement. The traditional approach requires tremendous effort for sample collection and laboratory chemical 

analyses(Sonobe et al., 2017). Moreover, the process of measuring chlorophyll is destructive and does not allow rapid 

and effective monitoring on large scale. Thus, hyperspectral remote sensing is valuable as a rapid and nondestructive 

method for estimating leaf chlorophyll content. Soil Plant Analysis Development (SPAD), it another spectroscopic 

method used to determine the relative content of chlorophyll with a portable chlorophyll analyzer. However, the band 

used to estimate the chlorophyll content is single and fixed, which is not appropriate for large-area 

measurement(Agarwal et al., 2018). Conversely, this study employed linear and non-linear algorithms to determine 

the optimal method for deriving the leaf chlorophyll content of Moso bamboo. 

 

4.3 Research prospects 

 

This research explores a more accurate estimation method for the leaf chlorophyll content of Moso bamboo. 

Although we consider upper, middle, and lower canopy layer, we focus on the leaf level, with no extension to the 

canopy scale. Thus, considering the leaf and canopy scale effect, several leaf-canopy radiative transfer models should 

be applied in future(Le Maire et al., 2004). The method proposed on this study can be used to rapidly and precisely 

derive the special reflectance of Moso bamboo, which differ from that of other typical vegetation(Guan et al., 2012; 
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Zhang et al., 2016). 

 

5. CONCLUSIONS 

 

This study analyzed the correlation between the chlorophyll content of Moso bamboo and the original spectral 

reflectance, first derivative reflectance, spectral parameters, and vegetation indices in order to determine the spectral 

variables with the highest correlation to bamboo chlorophyll content, and construct unary and multivariate inversion 

models of chlorophyll content. Through a comparative analysis, we drew the following conclusions: 

(1) The most sensitive band intervals were 409-752 nm, 1708-1776 nm, and 2270-2450 nm in original spectral 

reflectance and 484-552 nm and 683-718 nm in first derivative reflectance. The majority of hyperspectral parameters 

and vegetation indices had a strong relationship with leaf chlorophyll content. 

(2) Dfferent modeling methods exhibited different correlations (R2) for leaf chlorophyll content estimates. 

Overall, RF exhibited better performance in terms of leaf chlorophyll content, with R2 values of 0.870.  
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