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ABSTRACT: Wildfire burn mapping provides information for not only ecological disturbances but also supports 
post-fire treatment activities. However, due to the labor-intensiveness and high costs of the field-based data collection, 
remotely sensed satellite images are considered to be efficient alternatives for such tasks. For rapid damage estima-
tion, availability of post-event images becomes a crucial factor, but most of the high-resolution satellite images are 
captured in long temporal intervals. In this respect, PlanetScope images have considerable potential for applications 
in disaster management, as Planet provides daily imagery with 3-m spatial resolution from their micro-satellite con-
stellation. 
In this study, high-resolution satellite images from PlanetScope were employed to assess the damage from a wildfire, 
which occurred in the coniferous forest of Gangwon Province, South Korea in April 2019. In doing so, object-based 
image analysis (OBIA) was performed to reduce the complexity of high-resolution images and computational costs 
of the subsequent image processing. Image segmentation results were obtained by applying SLIC (Simple Linear 
Iterative Clustering) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) utilizing spectral 
and textural information as object features. The final wildfire burn map was produced from the integration of pixel-
based dNDVI (differenced Normalized Difference Vegetation Index) and object boundary. The experimental results 
were evaluated with manually derived reference data and showed the highest accuracy implying the effectiveness of 
OBIA when applied in wildfire damage assessment application. 

1. INTRODUCTION

As the instant accessibility to wildfire sites is generally limited by its high heat emission, wildfire burn mapping has 
been widely investigated with remotely sensed images through the literature. Most of the previous studies on wildfire 
damage assessment using satellite images have been focused on Mediterranean regions or boreal forests (San-Miguel-
Ayanz et al., 2009; Chu and Guo, 2014) where massive fires frequently occur yearly. For those large-scale wildfires, 
moderate to low spatial resolution satellite images are sufficient for discrimination of burned area and monitoring the 
trend of wildfires over a long period (Levin et al., 2012; Soulard et al., 2016). However, for burned area mapping of 
local-scale wildfire, higher spatial resolution is required to delineate the details of wildfire-induced damages. Re-
cently, PlanetScope has emerged as a powerful source of high-resolution satellite images. Unlike the conventional 
high-resolution sensors, which usually capture on-demand images or images with temporal interval of several days, 
PlanetScope collects high-resolution images from more than 120 Dove satellites on a daily basis, shortening the 
temporal interval of available images for instant disaster-induced damage assessment. Therefore, in this study, we 
detected the burned area of a wildfire, which occurred in the coniferous forest of Gangneung, Gangwon Province in 
South Korea in April 2019 with PlanetScope images. 
For change detection, image processing can be divided into pixel-based and object-based, based on the image pro-
cessing unit. First, pixel-based algorithms are theoretically simple and known to well perform for low and medium- 
resolution images (Hussain et al., 2013). But in higher resolution images, pixels are not spatially independent, and 
conventional pixel-based methods become less effective than object-based methods (Aggarwal et al., 2016). Mean-
while, OBIA was introduced to reduce the noises and computational complexity of the subsequent image tasks. How-
ever, image segmentation quality may affect the accuracy of the final results, and multiple features should be carefully 
considered in image segmentation procedures. 
The purpose of this study is to enhance the accuracy of burned area detection results with high-resolution satellite 
images by integrating pixel-based spectral index with the objects from SLIC and DBSCAN. In doing so, additional 
spectral and textural features were applied to cluster SLIC superpixels and its influence on change detection perfor-
mance was evaluated with PlanetScope data. To prove the usefulness of employing both spectral and textural features 
into superpixel clustering, a comparative analysis was performed with the results from spectral features alone. 
This paper is organized as follows. Section 2 illustrates the study site and remote sensing data used in this study. 
Section 3 describes the method to estimate the fire-affected area by integrating pixel-based and object-based image 
analysis. The experimental results of burned area mapping are presented in Section 4, and the meanings and limita-
tions of the proposed method are addressed as well. As a conclusion, Section 5 sums up the points of the study and 
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suggests future studies. 
 

2. STUDY SITE AND DATA 
 

2.1 Study Site 
 

The study area is a wildfire site from Gangneung, Gangwon Province in South Korea, which suffered severe wildfire 
in April 2019 (Figure 1). Gangneung is located in the east side of the Tae Baek Mountains, which is the major moun-
tain ranges in South Korea and features a maritime climate. The fire began on April 4th, 2019 and continued for four 
days, burning 1,260 ha of pine forests (Gangwon et al., 2019). Considering the fact that Korea Forest Service (2019) 
defines large forest fires as wildfires burning more 100 ha, 2019 Gangwon wildfire was one of the most severe 
wildfire cases in nationwide wildfire history. 
 

 
Figure 1. Location of study site 

(PlanetScope post-fire image displayed with pseudo colors; R: NIR, G: Green, B: Blue) 
 

2.2 Data 
 

The data used in this study is from PlanetScope satellite, which includes VIS and NIR bands with a spatial resolution 
of 3m (Table 1 and 2). Pre-fire and post-fire PlanetScope images at level-3B were used in wildfire burn mapping, 
each captured on April 4 and April 8, 2019 (Figure 2). All the images were obtained as free through Planet Education 
and Research program (Planet). As PlanetScope images were captured as a continuous strip of the scenes, image 
mosaicking was performed with edge feathering. Then the mosaicked images were cropped into the area of interest. 
For PlanetScope level-3B product is an orthorectified scene product with atmospheric (conversion to top of atmos-
phere reflectance), radiometric (conversion to absolute radiometric values based on calibration coefficients), and ge-
ometric (using GCPs and fine DEMs) correction (Planet, 2019), no additional image pre-processing was applied 
before burned area mapping. 
 

Table 1. Specifications of PlanetScope Level-3B product (Planet, 2019) 

Sensor Spectral Bands 
Ground Sample 

Distance 
Radiometric 
Resolution 

Positional 
Accuracy 

PlanetScope 

Blue : 455 – 515 nm 
Green : 500 – 590 nm 
Red : 590 – 670 nm 
NIR : 780 – 860 nm 

3.7 m (average at 
reference altitude 

475 km) 

16 bit (Analytic, 
radiance) 

< 10 m RMSE 
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Table 2. Specifications of input images used for wildfire damage assessment 

Sensor 
Acquisition Time 
(YY/MM/DD) 

Description 
Pixel Size 

(Orthorectified) 
Image size 

PlanetScope 
19/04/04 Pre-fire 3 m 

(Level-3B Product) 
2500×2500 

(pixels) 19/04/08 Post-fire 
 

(a) (b) (c) (d) 
Figure 2. PlanetScope subset images used in this study; Pre-fire image captured on April 4, 2019: (a) displayed with 
true colors (RGB), (b) with pseudo colors (NIR·GB) and post-fire image captured on April 8, 2019: (c) displayed 

with true colors (RGB), (d) with pseudo colors (NIR·GB) (Includes material © (2019) Planet Labs Netherlands BV. 
All rights reserved.) 

 
3. METHODOLOGY 
 
The proposed algorithm is devised to enhance the burned area mapping performance with object boundary driven by 
utilizing spectral and textural information. To obtain the object boundary from the post-fire image, we performed the 
two-step image segmentation process before change detection; superpixel generation, superpixel clustering. First, for 
superpixel generation, NIR·GB image was used as an input to SLIC. Then, superpixel clustering using DBSCAN 
was applied to cluster superpixels into a certain size of objects for change detection based on spatial adjacency with 
additional color and texture conditions. For burned area detection, NDVI was selected among widely used spectral 
indices in consideration of available spectral bands from PlanetScope satellite images. Ultimately, the changes were 
extracted by thresholding pixel-based dNDVI image and recovered to objects using image segmentation results. The 
following subsections describe the method for estimating the fire-affected area in detail. 
Figure 3 shows the overall flowchart of the study. 
 

 
 

Figure 3. Flowchart of the proposed wildfire burn mapping method 
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3.1 Superpixel Generation 
 

To segment the post-fire image into objects for burned area detection, firstly image oversegmentation was conducted 
using SLIC technique, which utilizes color and spatial information of the image to efficiently generate uniform su-
perpixels (Achanta et al., 2010). SLIC is well known for outperforming the previous superpixel methods with high 
image segmentation quality (Achanta et al., 2012).  Moreover, SLIC is advantageous as it requires RGB bands as 
input and much less input parameter compared with other conventional image segmentation methods. In principle, 
SLIC performs local clustering in 5-dimensional space defined by L, a, b values from CIELAB color space and x, y 
pixel coordinates within 2S-by-2S (pixels) search region. As a parameter for the grid interval between initial cluster 
centers, S means the expected superpixel size from the desired number of superpixels. Considering the size and spatial 
resolution of the image, the only parameter required for SLIC, S was set as ten thousand, so that the expected size of 
a single superpixel to be 25-by-25 pixels. However, as shown in Figure 2 (c), it is difficult to visually discriminate 
the burned area from the surroundings by post-fire RGB image. Therefore, the pseudo-color composite image 
(NIR·GB image) was used instead of RGB image as an input to SLIC. Such replacement is possible because SLIC 
operates its clustering based on CIELAB color space which was initially devised as perceptual color space. Thus 
visually enhanced images could produce improved image segmentation results with proper band combinations. 
 
3.2 Superpixel Clustering 

 
In the following, the previously produced superpixels were clustered into a certain size of objects for efficient change 
detection. For superpixel clustering, DBSCAN (Ester et al., 1996; Kovesi) was employed to form clusters of super-
pixels. In doing so, mean Lab color distance between the two adjacent superpixels (Equation 1) was used as a basic 
clustering distance measure to determine the similarity of superpixels. 
 

( ) ( ) ( )2 2 2

1 2 1 2 1 2Lab Color Distance L L a a b b= − + − + −                                                                                    (1) 

 
where L = lightness 
             a = green–red color components 
             b = blue–yellow color components in CIELAB color space 

(L, a, b with subscript number 1 and 2 correspond to L, a, b values from two adjacent superpixels.) 
 
In addition to Lab color distance, we also used other spectral features, which is a, b color value ratio and distance 
(Equation 2 and 3), and textural features from co-occurrence metrics of post-fire NDVI images (Figure 4). In CIELAB 
color space, color is expressed in 3 numerical values, L, a, b, each refers to lightness, green-red and blue-yellow color 
components. Based on the properties of CIELAB color space, we focused on the fact that even for superpixels that 
have considerably large Lab color distance, when their colors (hue, to be specific) are similar, it can be included in 
the same cluster, and they are only appeared to have different lightness because of illumination conditions. 
 

( ) ( )1 1 2 2a,b Color Value Ratio a / b a / b Differences in Hue= − =                                                                         (2) 

 

( ) ( )2 2

1 2 1 2a,b Color Distance a a b b= − + −                                                                                                         (3) 

 

(a) (b) (c) (d) 
Figure 4. Co-occurrence metrics from post-fire NDVI image; (a) homogeneity (inversed), (b) dissimilarity, (c) en-

tropy, (d) second moment (inversed) 
 
For estimation of texture similarity, textural features were obtained from post-fire NDVI image, because it shows 
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clear discrimination between vegetation and non-vegetation, and provides less color-dependent information than 
RGB images. As measures to determine texture similarity, four co-occurrence metrics (homogeneity, dissimilarity, 
entropy, and second moment) were selected, which can be easily interpreted and tend to show similar values within 
the objects. All textures were normalized to values between 0 and 1, and its ratios were measured to evaluate the 
textural similarity of adjacent superpixels (Equation 4). 
 

( ) ( )1 2 2 1Texture similarity T / T  or T / T 1 for each texture= ≤                                                                                (4) 

 
where T = one of four co-occurrence metrics from NDVI image 

(homogeneity, dissimilarity, entropy, second moment) 
            (T with subscript number 1 and 2 correspond to texture values from two adjacent superpixels) 
 
All the features used to cluster superpixels were calculated from mean color and texture values of pixels within 
each superpixel, and these features were organized as stepwise conditions to determine whether the neighboring 
superpixels can be clustered into a single object or not. 
As shown in Figure 5, fundamentally, DBSCAN is performed for each superpixel, one-by-one, finding neighbor-
ing superpixels and comparing the clustering distance measure with certain threshold distance (EC). If some neigh-
boring superpixels satisfy the conditions, find their neighboring superpixels again and repeat the clustering proce-
dures until there are no more neighboring superpixels to be clustered. Then, it moves to the next superpixel to 
form a new cluster unless it is already grouped into previously-made superpixel clusters. Because the accuracy of 
texture information is known to be low when used without spectral information, spectral conditions were applied 
first. Then, under the assumption that spectral similarities are guaranteed to some extent, texture conditions were 
applied as ancillary data rather than primary data. All the coefficients included in Figure 5 (decision tree diagram 
for superpixel clustering) were determined by trial-and-error from our previous studies on urban change detection 
(Chung et al., 2019), extended to disaster damage assessment. 
 

 
 

Figure 5. Decision tree diagram for superpixel clustering using both color and texture similarity 
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3.3 Burned Area Detection and Object Boundary Recovery 

 
The burned area was detected by differenced NDVI (Equation 5 and 6), considering the available spectral bands from 
PlanetScope images. By employing the vegetation index to determine the fire-affected area, the main change intended 
to detect in this study was limited to the wildfire-induced vegetation loss. The dNDVI values were calculated pixel-
wise using pre-fire and post-fire images. It is due to the possibility that object features may not reflect the overall 
trend of features within the object when obtained by simply averaging individual values. Therefore, the pixel-based 
dNDVI image was used instead, and non-vegetation masking was applied to exclude the area that has NDVI values 
less than zero from the pre-fire image. Then, the pixels with dNDVI values higher than 0.1 were extracted as regions 
with the high possibility of being affected by the wildfire. 
 

NIR Red
NDVI

NIR Red

−=
+

                                                                                                                                           (5) 

 

pre fire post firedNDVI NDVI NDVI− −= −                                                                                                               (6) 

 
As the extracted change candidates from dNDVI thresholding appear to have noises, object boundary recovery was 
performed based on the final image segmentation results. To recover the object boundary of the post-fire image, we 
considered the whole single object as changed regions, when more than 50% of the pixels from an object are included 
in the changed regions. Finally, the ultimate change detection results were produced and evaluated with reference 
data visually and quantitatively. 
 
4. EXPERIMENTAL RESULTS 

 
The point of this study is to verify the influence of employing both spectral and textural information in image seg-
mentation of high-resolution images, and further, in change detection performance. The proposed wildfire change 
detection method was applied to PlanetScope high-resolution satellite images. In doing so, pixel-based dNDVI values 
were used as a measure to detect the burned area and integrated with the objects generated from SLIC and DBSCAN, 
which utilizes several object features for clustering. The final burned area mapping results were compared with man-
ually-driven reference data for evaluation of change detection performance. 
However, due to the difficulties in obtaining the segmentation reference for high-resolution satellite images, the eval-
uation for image segmentation quality was replaced with qualitative analysis. Through visual inspection (Figure 6), 
we found that textural information can improve the segmentation quality when integrated with proper spectral fea-
tures. It is also clearly shown in the stepwise images that the conditions applied in the process of superpixel clustering 
gradually clustered the superpixels with similar color and texture features while maintaining the boundaries with 
other covers. 
 

(a) (b) (c) (d) 
Figure 6. Zoom image for visual inspection of image segmentation results from (a) SLIC superpixels, (b) DBSCAN 
with only Lab color distance, (d) DBSCAN with additional color conditions, (e) DBSCAN with both color and tex-

ture conditions 
 
Moreover, the burned area mapping results from the proposed method (Figure 7) showed similar trends with reference 
data, especially, even well representing the boundaries of the narrow road located on the mountainside. But the results 
still contain some falsely detected changes, which are considered to be induced by the temporal interval between 
post-fire images used in detecting burned area and generating reference, each captured on April 8 and April 20, 2019. 
In other words, the regions with low spectral responses from the earlier image were misjudged as burned area, but 
seasonal changes after the wildfire improved the discriminating power between burned and unburned regions. 
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(a) (b) (c) (d) 

 
Figure 7. Zoom image for visual inspection (a) post-fire image, (b) image segmentation results from SLIC super-

pixel, (c) image segmentation results from DBSCAN with both color and texture conditions, (d) burned area detec-
tion results from the proposed method, compared with reference data 

 
To prove the influence of integrating the spectral and textural conditions in superpixel clustering and its effects on 
object-based image analysis, change detection was also performed for stepwise conditions composing the proposed 
method. The accuracy of change detection was assessed for five methods, including the proposed method with refer-
ence data (Table 3 and 4). Among the comparison group, the proposed method showed the highest accuracy for both 
producer’s and user’s accuracy with the highest kappa coefficient. Thus it clearly showed the advantages of handling 
high-resolution satellite images in object unit and potential for further improvement when additional features are 
applied properly. 
 

Table 3. Accuracy assessment (Overall accuracy, producer’s accuracy, and user’s accuracy) 

 
Table 4. Accuracy assessment (Commission error, omission error, and Kappa coefficient) 

Method 
Commission error (%) Omission error (%) Kappa 

coefficient Unburned Burned Unburned Burned 
Pixel-based 1.022 13.074 3.425 4.195 0.8892 

Superpixel-based 0.748 13.796 3.688 3.055 0.8903 
Object-based (with only Lab 

color distance) 
0.759 14.271 3.835 3.095 0.8866 

Object-based (with additional 
color conditions) 

0.919 12.606 3.299 3.774 0.8948 

Proposed object-based (with both 
color and texture conditions) 

0.807 12.494 3.282 3.311 0.8982 

 
5. CONCLUSION 

 
For the accurate delineation of the burned area boundary, the proposed method integrated pixel-based dNDVI and 
object boundary from SLIC and DBSCAN. To cluster the SLIC superpixels, DBSCAN organized the sequential 
conditions considering not only Lab color distance but also additional spectral and textural information. Textural 
information used in this study was obtained from co-occurrence metrics of post-fire NDVI images, as it provides 
discriminative responses for vegetation and non-vegetation with less color-dependent properties. The burned area 
was detected by thresholding the pixel-based dNDVI image to preserve the details of pixel-wise responses from 
the vegetation. Then, the previously generated object boundary was used to recover the objects from the pixel-

Method 
Overall 

accuracy (%) 
Producer’s accuracy (%) User’s accuracy (%) 
Unburned Burned Unburned Burned 

Pixel-based 96.427 98.978 86.926 96.575 95.805 
Superpixel-based 96.434 99.252 86.204 96.312 96.945 

Object-based (with only Lab 
color distance) 

96.307 99.241 85.729 96.165 96.905 

Object-based (with additional 
color conditions) 

96.609 99.081 87.394 96.701 96.226 

Proposed object-based (with both 
color and texture conditions) 

96.713 99.193 87.506 96.718 96.689 
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wise change candidates. The final change detection results were compared with the results from stepwise condi-
tions composing the proposed method. From the visual inspection and accuracy assessment, the proposed method 
showed the highest change detection accuracy with the highest Kappa coefficient while well preserving the details 
of the burned area. The experimental results validate the significance of applying multiple spectral and textural 
conditions in image segmentation but organized in a proper way. Besides, as the PlanetScope images are provided 
with acceptable product quality on a daily basis, it has considerable potential for disaster management applications. 
In the future studies, further investigation on the data interoperability of PlanetScope will enable the temporal 
intervals for disaster damage assessment to be even shortened. 
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