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ABSTRACT: The rapid urbanization in Cebu in recent years changed the land use patterns in the province. Areas 
allotted to forest or agricultural use are on a decline. In order to gain insight to the extent of vegetation loss in 
relation to the expanding urban sprawl in Cebu, multi-temporal analysis of Landsat images covering Cebu City, 
Mandaue City, Consolacion, Liloan, Lapu-Lapu City (excluding Olango island), and Cordova for the period 1994 
to 2019 was conducted. The NDVI, NDMI, and Tasseled Cap (TC) indices were computed to aid in the Land 
Use/Land Cover classification of the different Landsat images. After classification, urban density, growth rate, 
and vegetation loss were estimated. Urbanization was found to have widened in all the of the study areas but at 
different paces. Notable for their growth rates are Mandaue City and Lapu-Lapu City. Lapu-Lapu have four of the 
“fastest” growing grids while Mandaue have the 5th fastest growing grid. The direction of urbanization since 1994 
was also determined. The identification of areas of rapid growth and considerable vegetation loss provide 
government officials basis for land use regulation. Enactment of updated land use plans by local governments is 
recommended to ensure the rational allocation and proper use of limited land resources. 

1. INTRODUCTION

The rapid urbanization in Cebu in recent years changed the land use patterns in the province. Metro Cebu is 
considered the second biggest urban center in the Philippines. The rise of new residential subdivisions, commercial 
zones, and industrial complexes have led widespread yet unquantified vegetation loss. Urbanization has encroached 
into agricultural and forest lands. Vegetation loss impairs the capacity of nature to provide ecosystem services 
vital to the population’s well-being such as reduction of air quality, reduction of air pollution, and climate 
regulation (De Carvalho & Szlafsztein, 2019). 

Remote sensing and GIS techniques have been used to detect changes in land use, forest disturbances, and/or land 
degradation particularly utilizing Landsat multitemporal images (Amine & Hadria, 2012; Boori, Netzband, 
Choudhary, & Voženílek, 2015; Devries, Pratihast, Verbesselt, Kooistra, & Herold, 2016; Hislop et al., 2018; 
Plaiklang et al., 2008; Schultz et al., 2016). Meanwhile, identifying current land use/land cover through 
classification of Landsat images has been extensively utilized in several researches and contexts (Ali & Salman, 
2016; Amine & Hadria, 2012; Boori et al., 2015; Devries et al., 2016; Rokni, Ahmad, Selamat, & Hazini, 2014; 
Schultz et al., 2016; Vorovencii, 2007; Wilson & Sader, 2002; Young et al., 2017). These techniques can be utilized 
to satisfy our objectives to wit: (1) identify and measure past and present land cover, (2) estimate vegetation loss, 
and (3) determine past and present urban density, and, lastly, calculate the urban growth rates of the cities of Cebu, 
Mandaue, and Lapu-Lapu (excluding Olango Island), as well as the municipalities of Consolacion, Cordova, and 
Liloan. 

2. MATERIALS AND METHODS

2.1 Study Area and Data 

The study covers the cities of Cebu, Mandaue, and Lapu-Lapu (excluding Olango Island), as well as the municipalities 
of Consolacion, Cordova, and Liloan. Three Landsat images with the less than 20% cloud cover from different 
decades were downloaded. A temporal difference spanning at least 10 years between images was targeted to see 
significant land use or land cover change. However, due to limited availability of data with little to no cloud cover, 
data from the years 1994, 2002, and 2019 were the ones acquired. Specifically, a Landsat 5 TM from 1994 (USGS, 
1994), Landsat 7 ETM+ from 2002 (USGS, 2002), and Landsat 8 OLI from 2019 (USGS, 2019) which were 
preprocessed from digital numbers (DN) to surface reflectance (SR) using the Landsat Ecosystem Disturbance 
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Adaptive Processing System (LEDAPS) for Landsat 5 TM and Landsat 7 ETM+ images and the Landsat Surface 
Reflectance Code (LaSRC) for Landsat 8 OLI image (See Fig. 1-3). 
 

Figure 1. RGB Composite of study area, 1994. Landsat images courtesy of the U.S. Geological Survey 
 

Figure 2. RGB Composite of study area, 2002. Landsat images courtesy of the U.S. Geological Survey 

Figure 3. RGB Composite of study area, 2019. Landsat images courtesy of the U.S. Geological Survey 
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Table 1 displays the relevant information about each image collected.  
 

Table 1. Metadata of Landsat images used in the study 

 
 

2.2 Methods 
 
The general method for the Land Use/Land Cover classification is shown in the flow chart below (Fig. 4) with the 
major components discussed in the succeeding sections. 
 

 
 

Figure 4. Flow chart of land use/land cover classification 

Sensor Date Spatial Resolution Bands used (RGB, NIR, SWIR) 
Landsat 5 TM July 21, 1994 30m 1-5, 7 

Landsat 7 ETM December 26, 2002 30m 1-5, 7 
Landsat 8 OLI April 21, 2019 30m 2-7 
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2.2.1 Image Preprocessing and Vegetation Indices 
 

After the collection and preprocessing of Landsat images, vegetation indices (VIs) are computed to aid in the 
classification of these images. Landsat preprocessing methods are adopted as discussed by Young et al. (2017). 
From the surface reflectance, Normalized Difference Vegetation Index (NDVI) and Normalized Difference 
Moisture Index (NDMI) were calculated for each image. NDVI is used to quantify increase or decrease of 
vegetation greenness while NDMI is used to quantify vegetation water content (Wilson & Sader, 2002). Both were 
calculated using Eq. (1) and (2), respectively: 
 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅)
(𝑁𝐼𝑅 + 𝑅)																																																																																								(1) 

 

𝑁𝐷𝑀𝐼 =
(𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅)
(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅)																																																																																(2) 

 
 

2.2.2 Tasseled Cap Transformation (TCT) 
 

The VIs above are only limited to the use of the NIR, SWIR, and R band. We proceed with Tasseled Cap 
Transformation to utilize the rest of the available bands i.e. G and R (Ali & Salman, 2016; Amine & Hadria, 2012; 
Schultz et al., 2016; Vorovencii, 2007). The different bands of TCT (Brightness (TCb), Greenness (TCg), and 
Wetness (TCw)) are calculated from the surface reflectance images from all years using the following equations 
(Eq. 3, 4, and 5): 
 

𝑇𝐶𝑏 = 𝑏4𝐵 + 𝑏6𝑅 + 𝑏7𝐺 + 𝑏9𝑁𝐼𝑅 + 𝑏:𝑆𝑊𝐼𝑅1 + 𝑏;𝑆𝑊𝐼𝑅2																																									(3) 
 

𝑇𝐶𝑔 = 𝑔4𝐵 + 𝑔6𝑅 + 𝑔7𝐺 + 𝑔9𝑁𝐼𝑅 + 𝑔:𝑆𝑊𝐼𝑅1 + 𝑔;𝑆𝑊𝐼𝑅2																																								(4) 
 

𝑇𝐶𝑤 = 𝑤4𝐵 + 𝑤6𝑅 + 𝑤7𝐺 + 𝑤9𝑁𝐼𝑅 + 𝑤:𝑆𝑊𝐼𝑅1 + 𝑤;𝑆𝑊𝐼𝑅2																																					(5) 
 

where each coefficient is defined in Table 2 for each band. 
 

Table 2. Tasseled Cap Coefficients for surface reflectance data 
 B G R NIR SWIR1 SWIR2 

TCb (b) 0.2043 0.4158 0.5524 0.5741 0.3124 0.2303 
TCg (g) -0.1603 0.2819 -0.4934 0.7940 -0.0002 -0.1446 
TCw (w) 0.0315 0.2021 0.3102 0.1594 -0.6806 -0.6109 

 

2.2.3 Layer Stacking 

The resulting vegetation and Tasseled Cap (TC) indices were stacked to create one 5-band composite image for 
each year where the TC indices were the first three bands (b,g,w), followed by the NDVI (Band 4) and lastly, the 
NDMI (Band 5). Each composite image will be used in both the creation of training samples as well as the maximum 
likelihood classification process. 
 
2.2.4 Classification 

Since the study is focused on urban sprawl, the number of classes for the classification process were limited to four, 
namely, “Water", “Urban”, “Undeveloped/Bare”, and “Vegetation”. These four main classes are described in detail 
in Table 3.  

   
Table 3. Description of land use/classes used 

Land Use/Class Description 

Water Water bodies, coast, rivers, lakes, open sea 

Urban Residential, commercial, industrial, roads, mixed urban 

Undeveloped/Bare Dry soil, mining areas, dry agricultural land, very sparse vegetation 
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Vegetation Trees, forested areas, parks, dense vegetation, grassland, mangroves 
 

Classification will be processed using the Image Classification toolbar in ArcMap 10.6 following a tutorial by Nagi 
(2011). Training samples were collected for each year by digitizing accurate polygons of each class. Scatterplots 
for each year were created and examined to check the separability of each class at each band combination. When 
the separability of all training samples were satisfactory, training signature files were created to be used in the 
Maximum Likelihood (ML) classification with equal a priori probability weighting. To reduce the “salt and pepper” 
effect of the resulting classification, a majority filter using eight neighbors was used. Minor clouds and haze found 
near the mountainous areas were manually classified and presumed as vegetation since these were found in forested 
areas. 
 
2.2.5 Urban Density and Annual Urban Growth Rate Calculation 

For this study, we utilize the process outlined by Boori et al., (2015) that introduces multi-buffer rings in calculating 
for urban density and growth rate and the subsequent visualization. The methodology of urban density and urban 
growth rate calculation is seen in the flow chart below (Fig. 5): 

 

 
Figure 5. Process flow for urban density and urban growth rate calculation 

 
To calculate urban density, multi-buffer rings were created for every 1 kilometer from the city center up to 10 
kilometers then every 5 kilometers succeeding that. Since the cities and municipalities included in this study do not 
have a well defined “city center”, their respective municipal or city halls were used as their city centers. These rings 
were then intersected with the final classification output per municipality for all three years. The area per class per 
ring for all three years were calculated as well as the total urban area for each year. Urban density of each ring was 
derived using the following equation: 
 

𝑈𝑟𝑏𝑎𝑛𝑑𝑒𝑛𝑠𝑖𝑡𝑦KLMN =
Area	of	Urban	class[\]^		

Total	area[\]^                                                             (6) 

 
The urban densities of each city/municipality are then visualized to see the difference over time. 
 
To calculate the magnitude of the urbanization per unit area, an indicator called annual urban growth rate was 
adapted: 

 

𝐴𝑛𝑛𝑢𝑎𝑙𝑈𝑟𝑏𝑎𝑛𝐺𝑟𝑜𝑤𝑡ℎ𝑅𝑎𝑡𝑒 = (Area	of	Urban	classrecent	yeargArea	of	Urban	classearliest	year)
Recent	Year	-	Earliest	Year                    (7) 

 
The whole study area was divided into 1 km grids for uniformity and the area of the “Urban” class for the most recent 
year and the earliest year was calculated for each grid. In this study, the difference of the 2019 result and the 1994 
result was calculated. The difference in urban area was then divided by the number of years between the images to 
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get the annual urban growth rate. The annual urban growth rate of each municipality/city was also calculated using 
the same formula. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Classification 
 
The NDVI, NDMI, and Tasseled Cap (TC) indices were created to aid in the Land Use/Land Cover classification 
of the different Landsat images. Fig. 6 shows the resulting maps of Tasseled Cap Indices Composite for the years 
1994, 2002, and 2019. 

Figure 6. (L-R) Tasseled Cap Indices Composite from 1994, 2002, and 2019. 
 

The Landsat maps used in this study had cloud cover (<20%). In the TC composite, shadows caused by cloud cover 
show the same characteristics as water. However, this issue is addressed by manually classifying the clouds. 
 
Scatterplots were created after training sample collection to examine the separability of the collected training 
samples (See Fig. 7-9). 

 

 
 
 
 
 

Figure 7. Scatterplots of the training samples for 1994 images. (L) NDVI vs. TCb, (R) NDVI vs. TCw 
 

Figure 8. Scatterplots of the training samples for 2002 images. (L) NDVI vs. TCb, (R) NDVI vs. TCw 
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Figure 9. Scatterplots of the training samples for 2019 images. (L) NDVI vs. TCb, (R) NDVI vs. TCw 

 
For all three study years, three inputs showed potential in separating the classes, namely, NDVI, TCb, and TCw. 
The NDVI vs. TCb and NDVI vs. TCw scatterplots showed to have the most separability among classes. It can also 
be observed that the separability between urban and undeveloped/bare training samples are not so evident for the 
2019 image training samples. This could be caused by the increase of subdivision development hence, urban areas 
mixed with dry land/soil. 
 
The classification result for each study year is shown in Fig. 10. It can be observed that the 2019 result is quite 
different from the 1994 and 2002 result with respect to the undeveloped/bare class in the northern part of the study 
area. This is caused by the drying of land due to summer. As this was the most recent cloudless image available, 
and considering that the focus of this section would be on the urban class, this was not going to affect the study 
significantly.  

 
Figure 10. (L-R) Maximum Likelihood Classification outputs for 1994, 2002, 2019. 

 
3.2 Urban Density 

Figure 11. Multi-ring buffer zones for each city/municipality including their centers 
 

Given that the municipalities and cities included in the study are quite small with the exception of Cebu City, it 
can be seen that most of the multi-ring buffers do not go farther than 10 km (See Fig. 11). The urban density for 
each ring were calculated for each study year and visualized. 
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Figure 12. (L-R) Urban density of Cebu City and Consolacion from center outward for 1994, 2002, and 2019. 

Figure 13. (L-R) Urban density of Cordova and Lapu-Lapu City from center outward for 1994, 2002, and 2019. 

Figure 14. (L-R) Urban density of Liloan and Mandaue City from center outward for 1994, 2002, and 2019. 
 
As seen in Fig. 12 to 14, the urban densities at the 1 km ring buffers for non-cities (Cordova, Liloan, Consolacion) 
during 1994 were all less than 30% but increasing, even in 2019. At the 1 km ring, Cebu City and Mandaue City 
both had urban densities above 80% in 1994 with only minor growth in 2002 and 2019. However, the bulk of their 
urban growth is found between the 3 and 7 km ring buffers with the largest increase being approx. 60% for Mandaue 
City at the 6 km ring and approx. 30% for Cebu City at the 5 km ring. Cebu City still has noticeable increases even 
up to the 10 km buffer. Lapu-Lapu City started with only less than 50% urban density in 1994 but accrued almost 
80% in 2019. It can also be observed that Lapu-Lapu maintains approx. 60% urban density until the 5 km ring. For 
all 6 study areas, it is also evident that the urban density decreases as distance from the center increases which 
shows that urban areas are still concentrated in the city/municipality centers and only few areas far from the center 
are urbanized. 
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3.3 Annual Growth Rate and Vegetation Loss 

 
Figure 11. Annual Urban Growth Rate of entire study area 

 
With the resulting AGR result, it can be seen that the entire study area has increased in terms of urbanization but at 
different paces. The two most evident in terms of urban growth are Mandaue City and Lapu-Lapu City with 4 of 
the “fastest” growing grids belonging to Lapu-Lapu City and the 5th fastest growing grid belonging to Mandaue 
City. The fastest annual urban growth rate is at 0.031207 sq. km per year. The result shows the direction of 
urbanization since 1994. It also shows that Cebu City’s urban growth is more spread out given its large area 
compared to its neighbors like Mandaue City, Consolacion, Cordova, and Lapu-Lapu City that have relatively 
smaller land areas. This explains why Cebu City has more yellow and orange grids than red ones. 
 
The overall AGR for each study area was also calculated and is shown in the table below: 
 

Table 4. Urban Area Increase and Annual Urban Growth Rate 

 
 
It can be observed that Lapu-Lapu City has the highest AGR with 0.8675 sq. km/year followed by Cebu City at 
0.7108 sq. km/year. Mandaue City, Consolacion, and Liloan having similar AGR at around 0.33-0.36 sq. km/year. 
However, given that Mandaue City has a significantly smaller area compared to Liloan and Consolacion, this AGR 
has a greater impact to Mandaue City. Moreover, because of Cordova’s small land area, it’s AGR of 0.1655 still 
has a significant impact. The rates of vegetation loss are found to be: Cebu City at 3.21 sq. km./year, Mandaue City 
0.33 sq. km./year, and Lapu-Lapu City 0.91 sq. km./year. Meanwhile, Consolacion, Cordova, and Liloan are 
experiencing vegetation loss at 0.63 sq. km./year, 0.21 sq. km./year, 0.91 sq. km./year, respectively. 

 
4. CONCLUSION 
 
Remote sensing and GIS techniques and the availability of free Landsat images allow the fast computation and 
monitoring which can keep pace with rapid urban growth.  The identification of areas of rapid growth and 
considerable vegetation loss provide vital information to government efforts in land use regulation. Enactment of 
updated land use plans by local governments is recommended to arrest vegetation loss and ensure the rational 
allocation and proper use of limited land resources. 

Urban Area Increase (sq. km) Annual Urban Growth Rate (sq. km/year)
1994-2002 2002-2019 1994-2019 1994-2002 2002-2019 1994-2019

Cebu City 6.20 11.57 17.77 0.7746 0.6807 0.7108
Mandaue City 4.38 4.09 8.47 0.5480 0.2404 0.3389
Lapu-Lapu City 9.16 12.53 21.69 1.1450 0.7369 0.8675
Consolacion 3.00 6.24 9.24 0.3748 0.3669 0.3694
Liloan 2.69 5.56 8.25 0.3365 0.3271 0.3301
Cordova 1.34 2.79 4.14 0.1680 0.1643 0.1655
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