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ABSTRACT: In the short-term aftermath of a wildfire, quick damage assessment is significant to implement 

efficient disaster response, but the acquisition of reliable reference data can be difficult. Remote sensing (RS) 

methods using satellite imagery can provide a rapid means to quantify the distribution (burn area) and level of damage 

(burn severity) for wildfire damage assessment. However, optical satellite images are limited by their spatial and 

temporal resolutions. In this study, Planetscope (PS) and Sentinel-2 (S2) images were processed to evaluate the 

Okgye, Sokho, and Inje wildfires in terms of their burned area using differential images of spectral indices. First, 

Normalized Burn Ratio (NBR) of S2 images and Normalized Vegetation Index (NDVI) of PS images were processed. 

The correlation between S2 dNBR and PS dNDVI was found to be 0.9390, suggesting the similarity between the two 

spectral index calculations. Second, to fully utilize the superior spatio-temporal resolution of PS and the broader 

spectral range of S2, dNBR spectral information from S2 (20 m spatial resolution) was transferred to the high spatial 

resolution PS dNDVI result (3 m spatial resolution) by histogram matching. The results revealed that this integrated 

approach classified the burned area of the Okgye wildfire more accurately because the histogram-matched image 

was able to discriminate smaller features more clearly, such as patches of bare soil and narrow roads. However, this 

method struggled to estimate burned area for the Sokcho and Inje wildfire study areas due to overestimation in mixed 

land cover areas and underestimation in mountainous topography, respectively. Although the performance of the 

histogram matching method can be scene-specific, the intervals from the histogram-matched results can be used as 

potential benchmarking values for future wildfire damage assessment using VIS-NIR imagery. 

 

1. INTRODUCTION 

Following the outbreak of a wildfire, rapid response is imperative to implement efficient disaster management 

measures. Under such dire circumstances however, high quality reference data can be difficult to obtain or are 

inaccessible, while traditional field surveying methods are generally too slow or costly to be used effectively. 

Alternatively, remotely-sensed satellite imagery can provide vital information of the wildfire at higher temporal 

frequency, lower costs, wider spatial coverage, and faster processing speeds.  

In general, considerable spatio-temporal resolution and wide coverage are required to evaluate the wildfire 

damage effectively. Recent studies revealed that medium-resolution optical satellite imagery such as Landsat-8 (L8) 

Operational Land Imager/Thermal Infrared Sensor and Sentinel-2 (S2) MultiSpectral Instrument (MSI) were used 

most frequently for wildfire burn mapping and evaluation (Navarro et al., 2017; Fernández-García et al., 2018; 

Sobrino et al., 2019). For wildfire burn estimation, spectral indices are frequently used due to their computational 

lightness, resistance to terrain relief and shadows, and relatively accurate performance (Fernández-Manso et al., 

2016; Fernández-García et al., 2018; Sobrino et al., 2019). Traditionally, the Normalized Difference Vegetation 

Index (NDVI) has been a popular choice to evaluate wildfire damage because the index can accentuate the spectral 

characteristics of vegetation in comparison to non-vegetation (including burned areas) at NIR and red wavelengths. 

For satellite sensors that can sense in the Short-Wavelength Infrared (SWIR) band, such as L8 and S2, the 

Normalized Burn Ratio (NBR) (Key and Benson, 2003) has become one of the most commonly-used and adopted 

indices for the detection of wildfire burn scars (Fox et al., 2008) and mapping of burn severity (Cocke et al., 2005; 

Escuin et al., 2008). The two spectral indices are given by the following band combinations: 

NDVI =  
NIR−RED

NIR+RED
                                    (1) 

  NBR =  
NIR−SWIR

NIR+SWIR
                            (2) 

In comparison to the NIR and red band difference used in NDVI, NBR utilizes the contrast in SWIR and NIR 

responses reflected between burned areas and healthy vegetation. At times, this difference can provide more 

meaningful information since the scorched ashes reflect stronger signals in the SWIR range (Miller and Thode, 

2007). The characteristics of spectral indices are explained in more detail in Section 3.2 and 3.3. In order to classify 
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wildfire burn severity, the differential NBR classification scheme revealed by United States Geological Survey 

(USGS) provides reputable reference values (Key and Benson, 2003) and have been widely used for studies on 

wildfire burn area and severity mapping (Cocke et al., 2005; Miller and Thode, 2007; Sobrino et al., 2019). Further 

explanation is provided in Section 3.3. 

Despite their advantages over traditional ground-based methods however, optical satellites can suffer from a 

trade-off between their spatial and temporal resolutions when applied for wildfire damage assessment. To address 

this limitation, satellite images with higher spatiotemporal resolution can be used. Planet Labs offers one potential 

solution by operating a constellation of more than 120 Cubesat units referred to as Planetscope (PS). The Cubesats 

are lightweight and inexpensive, consisting of essentially a multispectral sensor and downlinking system (Cooley 

et al., 2017). These nanosatellites provide daily global coverage of the Earth using one Near-Infrared (NIR) and 

three visible (VIS) bands at about 3 m spatial resolution. PS thus provides a cost-effective solution by acquiring 

images at shorter revisit times, higher spatial resolution, reasonable pricing, and sufficient coverage of the wildfire 

target scene (Houborg and McCabe, 2016; Houborg and McCabe, 2018a; Houborg and McCabe, 2018b). 

PS possesses superior spatio-temporal resolution over conventional satellites, but can be disadvantageous for 

wildfire damage assessment due to its lack of an SWIR band and limited spectral bandwidth. Also, using only 

satellite images can be problematic since factors such as cloud coverage, haze, shadow, insufficient coverage, and 

inadequate revisit time can limit image acquisition for wildfire damage assessment. Another issue to note is the the 

application of the USGS burn severity scheme in Korea. This procedure requires additional testing since there is 

confusion when mapping areas between non-burned and low-severity intervals. Hence, despite the diversity of 

spectral indices available, there is yet no consensus on the most optimal and robust index for wildfire damage 

assessment (Miller and Thode, 2007; Fernández-García et al., 2018).  

In light of the drawbacks of using the satellites individually, combining the advantages of both conventional 

satellites and PS would be ideal. This study therefore presents the prospect of exploiting the high spectral resolution 

of optical satellites and high spatial-temporal resolution of PS. Histogram matching, or histogram specification, is 

applied in order to combine the information from the different sensors. the spectral information from the coarse 

spatial resolution domain is transferred to a higher spatial resolution domain, where the wildfire damage can be 

analyzed at a finer level of detail. This approach is particularly useful if high quality ground truth data or 

conventionally-used optical satellite images are not available for wildfire damage assessment. This study is 

organized in the following order: Section 2 introduces the study area and the datasets used to investigate the 

wildfires. Section 3 presents supporting concepts covered in this research, such as spectral indices and differential 

images used for wildfire damage assessment. Section 4 reveals the results of wildfire damage assessment in terms 

of burn area for each study area. Finally, the conclusion provides a summative review of the study and closing 

remarks on the potential of PS for wildfire damage assessment. 

 

2. DATASETS AND STUDY AREAS 

2.1  Study Areas 

 

The Gangwon wildfires in April 2019 refer to three wildfires which engulfed different regions of the province. First, 

the Okgye wildfire was discovered south of Okgye-myeon in the Gangwon province, where the flames blazed 

throughout the mountainous regions, but also managed to reach nearby roads and small patches of land. Second, the 

Sokcho wildfire spread throughout both rural and mountainous regions. Third, the Inje wildfire burned in the forest 

and mountainous regions in Nam-myeon. According to the disaster response and recovery report issued by Ministry 

of the Interior and Safety (MOIS) on April 18th, 2019, the Okgye wildfire scorched 714.8 ha, the Sokcho wildfire 

burned 700 ha, and the Inje wildfire ravaged 342.2 ha of land (MOIS, 2019). Detailed descriptions of the fires are 

organized in Table 1 where the time date is given in year/month/date format and the time, in Korean Standard Time. 

These measurements by MOIS were used as reference burn area values for wildfire damage assessment in this study. 

Subsequent investigations revealed that the fire was triggered by sparks from electrical wires and the wildfire 

expanded rapidly due to the arid climate, high leaf area, distribution of low-moisture coniferous trees, and high wind 

velocity (MOIS, 2019). The study areas of the three wildfires are shown in Figure 1 using post-fire PS images. 

 

Table 1. Details on the April 2019 Gangwon-do wildfires 

 

Site Okgye Sokcho Inje 

Location 
Gangneung-si, Okgye-

myeon, Namyang-ri 958 

Goseong-gun Toseong-myeon 

Wonam-ri 

Inje-gun Nam-myeon 

Namjeon-ri 503-2 

Discovered 19/4/4 (23:46) 19/4/4 (19:17) 19/4/4 (14:45) 

Extinguished 19/4/5 (16:54) 19/4/5 (08:15) 19/4/6 (12:00) 

Burn Area 714.8 ha 700 ha 342.2 ha 
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Figure 1. Map of study areas with each wildfire site displayed using PS post-fire images. 

 

2.2  Datasets 

 

Upon considering an appropriate dataset of satellite imagery for spectral image integration, S2 imagery was selected 

based on the sensor’s well-calibrated spectral bands (including SWIR bands), narrow bandwidths, accessibility of 

free data, relatively high spatial resolution, and reasonable revisit time (when both S2A and S2B units are used 

together). S2 images are provided as Level-1C images while PS images are provided in three product types: Level-

1B Basic scene, Level-3A Visual/Analytic ortho-scene, and Level-3B Visual/Analytic ortho-tile. Level-3 products 

are geometrically and radiometrically corrected images that are ready for further analysis. Basic specifications of 

the two satellites are shown in Table 2, and the spectral response functions of the two sensors are plotted together 

in Figure 2.  

 

Table 2. Specifications of PS and S2 satellite imagery 

Specifications PS S2 

Operator Planet Labs European Space Agency (ESA) 

Spatial Resolution 3.7 m (at nadir) 
10 m (VIS-NIR), 20 m (red-edge, 

SWIR), 60 m (cirrus, water vapor) 

Spectral Bands 4 bands 13 bands 

Temporal Resolution Daily 5 days (S2A and S2B combined) 

 

 

 
Figure 2. Comparison of S2 and PS spectral response functions. 
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In general, previous studies claimed that PS images suffer from poor radiometric resolution, low signal-to-noise 

ratio, and cross-sensor inconsistencies (Cooley et al., 2017; Houborg and McCabe, 2018a; Houborg and McCabe, 

2018b). In response to these issues, Planet Labs processes PS image acquisitions using various types of corrections 

and calibration/validation procedures. In-house correction methods include pre-launch and on-orbit sensor 

calibration, rigorous orthorectification using fine DEM and bundle adjustment algorithm, and mosaicking of 

acquired image stitches (Cooley et al., 2017; Houborg and McCabe, 2016; Houborg and McCabe, 2018b). Since 

this research is focused on post-processing the acquired PS images for wildfire damage assessment, Level-3 

Analytic PS ortho-scene images were selected to minimize preprocessing steps in this study. Also, S2 Level-1C 

images were used and corrected to Level-2A images. PS and S2 images were obtained based on minimal cloud 

coverage, sun zenith angle, revisit time, and overall scene quality. The detailed specifications of the datasets used 

in this study are listed in Table 3. To note, multiple PS images were required when the coverage of a single image 

was too small to cover the entire wildfire. 

 

Table 3. Specifications of input datasets used for wildfire damage assessment 

Site Sensor 
Acquisition 

Date  

Difference 

in Dates 

Number of Scenes 

for Full Coverage  
Sensor Type 

Cloud 

(%) 

Okgye 

PS 
04/03 

5 days 

2 Flock-3P-68 (Dove 1004) 
0 

04/08 2 Flock-3P-77 (Dove 0F28) 

S2 
04/03 1 S2A 3 

04/08 1 S2B 2.5 

Sokcho 

PS 
03/14 

31 days 

4 
Flock-2k 37 (Dove 1050) 

0 
Flock-3p 34 (Dove 103B)  

04/15 2 Flock-3m 2 (Dove 0F02)  0 

S2 
03/14 1 S2A 0 

04/15 1 S2B 0 

Inje 

PS 
04/03 

30 days 

2 Flock-2p 12 (Dove 0E3A) 
0 

05/03 2 Flock-2p 9 (Dove 0E26) 

S2 
04/03 1 S2A 5.6 

05/03 1 S2B 0 

 

 

3. METHODOLOGY 

3.1 Preprocessing Steps 
 

The S2 images were processed using a common architecture for Sentinel toolboxes called Sentinels Application 

Program (SNAP) version 6.0. The first step for preprocessing was to correct the input images to Level-2 products 

using Sen2Cor by ESA. This module performs atmospheric, terrain, and cirrus correction of Top of Atmosphere 

(TOA) from a Level-1C input image to generate Level-2A surface reflectance products (Louis et al., 2016). Second, 

band resampling was processed to match the different spatial resolutions of S2’s spectral bands as shown in Table 

2. Third, unnecessary water bodies and noise values were masked from the image. This filtering step was processed 

by using the Normalized Difference Water Index (NDWI) (McFeeters, 1996) where, in general, values greater than 

zero indicate the presence of water or moisture. 

NDWI =  
GREEN−NIR

GREEN+NIR
                                        (3) 

Lastly, the images were re-projected to the Universal Transverse Mercator 52N coordinate system (focused on the 

Korean peninsula) and fitted according to a subset of the studied wildfire region. For this study, the PS images were 

processed using the image analysis software, Environment for Visualizing Images (ENVI) version 5.3. In spite of 

Planet Lab’s rigorous corrections and calibration/validation procedures, additional preprocessing steps were still 

required. Initially, multiple ortho-scene products are required for full coverage of the wildfire. Since the images 

were acquired from different PS sensors, seamless image mosaicking of the images is needed. Noisy data and water 

bodies should then be filtered prior to analysis using NDWI thresholding. Lastly, the images are re-projected and 

fitted to the subset area. The ensuing masking and subset steps were conducted in a similar manner to that of S2. 
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3.2 Spectral Indices for Wildfire Damage Assessment 

 

The spectral indices, NDVI and NBR are particularly sensitive to the spectral responses reflected by vegetation and 

burned areas by manipulating the spectral responses acquired by the red, NIR, and SWIR bands. With regards to 

the former index, NDVI exploits the difference in spectral response recorded between healthy vegetation, which 

reflect strongly in the red-NIR range, and burned areas from wildfires, which reflect lower responses (Lentile et al., 

2006). As for the latter spectral ratio, NBR manipulates bandwidths that are characteristic of water absorption such 

as S2 MSI’s SWIR bands 11 and 12 to capture a larger range of post-fire variation (Tran et al., 2018).   

 

3.3 Differential Image Generation 

 

Post-fire images with minimal cloud coverage, favorable weather conditions, and full scene coverage may not be 

available in the first place. In this case, mono-temporal analysis using a single image can cause confusion when 

interpreting features which exhibit similar spectral characteristics, such as shadows and burned areas (Viana-Soto 

et al., 2017). The present study focused on the bi-temporal analysis of spectral ratio images, similar to change 

detection, but used only the differential images to minimize the effect of shadows and to manipulate the spectral 

characteristics between burned areas and healthy vegetation. The analysis of differential images of pre- and post-

fire images enabled more accurate assessment of the wildfire burn area and severity because the differential result 

can take into account unchanged features and low vegetation cover in the pre-fire scene (Fox et al., 2008). To create 

a differential image, the difference in NBR (dNBR) and difference in NDVI (dNDVI) between pre- and post-fire 

images are calculated. 

                       dNBR = NBRpre − NBRpost                                      (4) 

                      dNDVI = NDVIpre −  NDVIpost                         (5) 

 

Table 4. USGS classification scheme on wildfire burn severity using dNBR 

dNBR Interval Burn Severity 

< -0.25 High post-fire regrowth 

-0.25 to -0.1 Low post-fire regrowth 

-0.1 to +0.1 Non-burn 

0.1 to 0.27 Low-severity burn 

0.27 to 0.44 Moderate-low (Mod-low) severity burn 

0.44 to 0.66 Moderate-high (Mod-high) severity burn 

> 0.66 High-severity burn 

 

In particular, previous studies demonstrated the similarity between dNBR and dNDVI for detecting burned areas, 

given the nature of the two spectral indices (Fox et al., 2008; Navarro et al., 2017). The two indices have 

demonstrated significant overlap in values with each other, since burned vegetation and bare soil return similar 

spectral signals of low absorption in the NIR range and high reflectance in the SWIR and Red range. (Fox et al., 

2008). Bare surfaces and areas of minimal to no change yield values close to zero, while highly changed, or in this 

context, highly burned surfaces display large positive values. However, the intervals in Table 4 can vary according 

to multiple factors, including pre-fire vegetation density, forest type, land cover type, and climate (Miller and Thode, 

2007; Fox et al., 2008; Tran et al., 2018). 

 

 

3.4 Histogram Matching 

 

Histogram matching, or histogram specification, is defined as matching the pixel value distribution from a reference 

image, denoted as PR, to an input image, referred to as PA, by using a mapping function which describes the transfer 

of pixel values (Gonzalez and Woods, 2002). In principle, histogram matching is based on computing the cumulative 

distributions for each image and mapping the input image’s value at a given threshold point to the reference value 

that has the same probability (Gonzalez and Woods, 2002). This procedure is displayed in Figure 3. When 

converting to the histogram-matched (HM) image, the value of PA(xi) is found where the reference and input images 

are related such that: 

PA′(xi) ≈ PR(xi)                                (5) 

Based on this threshold value, xi is allocated to its new position xi' on the input image histogram. The matching 
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procedure can be expressed by a combination of the two distribution functions as: 

xi′ = PR
−1PA(xi)                                  (6) 

The result is HM image PA' which contains information from the reference image’s domain mapped to that of the 

input image. In this study, histogram matching is performed to transfer the S2 spectral information to the high spatial 

resolution PS image, provided that the images reflected similar characteristics in their scenes. 

 

 
Figure 3. Graphical visualization of histogram matching. 

 

3.5 General Workflow 

 

The following workflow shown in Figure 4 displays the specific processing steps executed in this study.  

 

 
 

Figure 4. General workflow of present study showing pre-processing (left) and damage assessment (right). 

 

4. RESULTS AND DISCUSSION 

4.1 Correlation of Spectral Indices 

 

Prior to histogram matching, regression analysis of the two differential images, S2 dNBR and PS dNDVI, were 

compared to evaluate the degree of similarity found in the computed images. Based on the subset scenes, the Okgye 

image returned the highest correlation coefficient of 0.939, as shown in Figure 5 (a). The other two images also 

displayed relatively high correlation. The Okgye scene revealed particularly high correlation since the two compared 

6



differential images had clear bimodal distributions. In other words, the burned and non-burned areas were well-

separated. In contrast, the Sokcho scene consisted of mixed land covers, as reflected by the wider range in high 

density points distributed near zero. The Inje scene was filled with forests and mountains and, as a result, the 

majority of the points were found to be than zero.  

 

 
 (a) 

 
(b) 

 
(c) 

 

Figure 5. Regression analysis of S2 dNBR and PS dNDVI. (a) Okgye (Correlation coefficient of 0.939).  

(b) Sokcho (Correlation coefficient of 0.784). (c) Inje (Correlation coefficient of 0.789).  

 

4.2 Wildfire Burn Area Estimation and HM Results 

 

The computed differential image of S2 dNBR and PS dNDVI are provided in Table 5 where wildfire burn scars are 

depicted using a lighter white tone, since higher values indicate greater change for each spectral index. The left and 

right portions of the Inje PS dNDVI and Okgye S2 dNBR, respectively, were not included in the subset because of 

the lack of coverage at the time of acquisition. As mentioned in Fox et al. (2008), the dNBR and dNDVI images 

exhibit similar high values in burned areas. While the two differential images showed similar burn area extents, the 

difference in spatial resolution is reflected by the finer details in the PS dNDVI image.  

 

Table 5. Comparison of differential images of spectral index calculations 

 Okgye Sokcho Inje 

(a
) 

P
S

 d
N

D
V

I 

   

(b
) 

S
2

 d
N

B
R

 

   
 

The S2 dNBR images were used as reference images to histogram match the input PS dNDVI images. As shown in 

Table 6, the reference images used dNBR burn severity values in Table 4 to histogram match points onto the PS 

dNDVI image for each wildfire site. On the PS dNDVI image, the HM threshold values less than zero (“regrowth” 

intervals) were omitted from because, in essence, these areas signified non-burn pixels. Non-burn regions were 

labelled without any color in the images and the subsequent threshold values were adjusted according to the 

histogram matching procedure. The resulting HM images are displayed in Figure 6.  
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Table 6. PS dNDVI intervals derived from S2 dNBR by histogram matching 

dNBR Interval 
HM PS dNDVI 

Burn Severity 
Okgye Sokcho Inje 

Min  - - - 
Non-burn 

-0.1  0 0 0 

0.1  0.178 0.303 0.229 Low-severity burn 

0.27  0.232 0.372 0.254 Moderate-low (Mod-low) severity burn 

0.44  0.286 0.441 0.279 Moderate-high (Mod-high) severity burn 

0.66  0.356 0.531 0.312 High-severity burn 

Max  0.504 0.713 0.361 Extreme or anomaly values  

 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 6. HM PS dNDVI images showing wildfire burn scar. (a) Okgye. (b) Sokcho. (c) Inje. 

 

 

4.3 Wildfire Damage Assessment 

 

Wildfire damage was evaluated using the HM PS dNDVI images provided in Figure 6. The resulting burned areas 

were calculated by summing HM intervals classified as burned area from “Low” to Extreme” burn severity intervals 

shown in Table 7. From these results, S2 dNBR estimates tended to overestimate the burned area for Okge and 

Sokcho test sites when using Table 4 for burn severity classification. After visual inspection and removing the “Low” 

severity interval, the burned area estimates returned much closer estimates to the reference values. This 

overestimation can be attributed to the difficulty of differentiating areas of low burn severity with non-burn areas. 

   Among the HM results, the HM PS dNDVI image for the Okgye wildfire produced the most accurate result. The 

HM image for Sokcho yielded an estimate in between the two S2 dNBR estimates, suggesting a slight 

overestimation in burned area classification. To elaborate, for the Okgye site, the burned areas were clustered 

together compared to the non-burned regions, whereas for the Sokcho site, the burn scar was distributed more 

sparsely within a mixed, heterogeneous area. In contrast, all images of the Inje wildfire underestimated burned area, 

likely due to confusion caused by the mountainous topography and relatively low levels of differential spectral index 

values.  

   While dNBR results can be classified for burn severity using Table 4, as mentioned, there is yet no agreement on 

the most optimal interval for burn severity classification when using VIS-NIR bands. However, since histogram 

matching can be subjective and scene-specific, additional tests using the HM intervals are required in order to 

consolidate the threshold values for effective classification. The results from Table 6 can thus be used as a 

preliminary benchmark for future burn severity thresholding when using PS images for burn severity grading. 

 

Table 7. Evaluation of burned area estimates from S2 dNBR and HM PS dNDVI 

Total Burn Okgye Burned Area (ha) Sokcho Burned Area (ha) Inje Burned Area (ha) 

Reference (MOIS, 2019) 714.8 700 342.2 

S2 dNBR (Low to High) 1472.40 1079.72 15.02 

S2 dNBR (Mod-Low to High) 913.92 803.28 5.13 

HM PS dNDVI 709.86 909.43 14.34 
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5. CONCLUSION 

 

In this study, damage assessment of the three Gangwon wildfires in Okgye, Sokcho, and Inje was evaluated in terms 

of burned area. From an ecological standpoint, even small burned patches are of utmost importance since the patch 

size and burn severity can ultimately affect the number of victims from the fire. In light of this consideration, this 

study demonstrated that PS images can be used with, and potentially instead of, other conventionally-used satellite 

imagery, given the shorter revisit time and superior spatial resolution of PS, to perform more accurate and rapid 

disaster response to wildfire damage. From this study, S2 imagery was used as a reference source to transfer their 

high spectral information to PS images and compensate for the spectral limitation of PS sensors. Spectral 

information from S2 dNBR was transferred to a higher spatial resolution domain in PS dNDVI, provided that the 

two spectral indices yielded a reasonable level of correlation in the compared scenes. The threshold values from S2 

dNBR were integrated via histogram matching to produce HM intervals in the PS dNDVI image. The HM PS 

dNDVI result for Okgye generated the most accurate estimate of burned area of 709.86 ha. On closer inspection, 

the HM image was able to discriminate smaller patches of land and narrow roads compared to the S2 dNBR image. 

For Sokcho and Inje on the other hand, the HM PS dNDVI images overestimated and underestimated the burn area 

to a considerable extent. These results suggest that sparsely distributed burn area, especially in regions of mixed 

land cover, as well as mountainous terrain and shadows can influence burn area estimations significantly. With 

regards to burn severity classification, since there is yet no global and robust spectral index for burn area and severity 

mapping, nor a reference classification scheme for dNDVI, the results of this study can be used as a preliminary 

benchmark for future wildfire damage assessment. Additional steps are required to test the burn severity thresholds 

for different acquisition times in order to develop a more concrete reference standard for effective wildfire burn area 

mapping.  
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