
Remote Sensing based Rice crop insurances as an operational service in India using Sentinel 1A 

and ORYZA crop simulation model 

 
*S. Pazhanivelan1, K.P.Ragunath1, N.S.Sudarmanian1, R. Kumaraperumal1, Tri setiyono2 and E.D. Quicho2 
1 Department of Remote Sensing and GIS, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India - 

ragunathkp@gmail.com, sudarnsagri@gmail.com, kumaraperumal.r@gmail.com,  
2 International Rice Research Institute, Philippines - t.setiyono@irri.org, e.quicho@irri.org 

*Corresponding author E-mail: pazhanivelans@gmail.com. 

 

KEY WORDS: Rice, Crop yield estimation, Synthetic Aperture Radar (SAR), Sentinel 1A, Crop growth model, ORYZA2000, Crop 

insurance 

 

ABSTRACT: 

Lowland rice in tropical and subtropical regions can be detected precisely and its crop growth can be tracked effectively through 

Synthetic Aperture Radar (SAR) imagery, especially where cloud cover restricts the use of optical imagery. Parameterised classification 

with multi-temporal features derived from regularly acquired, C-band, VV and VH polarized Sentinel-1A SAR imagery was used for 

mapping rice area. A fully automated processing chain in MAPscape-Rice software was used to convert the multi-temporal SAR data 

into terrain-geocoded σ° values, which included strip mosaicking, co-registration of images acquired with the same observation geometry 

and mode, time-series speckle filtering, terrain geocoding, radiometric calibration and normalization. Further Anisotropic non-linear 

diffusion (ANLD) filtering was done to smoothen homogeneous targets, while enhancing the difference between neighbouring areas. 

Multi-Temporal Features viz., max, min, mean, max date, min date and span ratio were extracted from VV and VH polarizations to 

classify rice pixels. Rice detection was based on the analysis of temporal signature from SAR backscatter in relation to crop stages. 

About sixty images across four footprints covering 16 samba (Rabi) rice growing districts of Tamil Nadu, India were obtained between 

August 2017 and January2018. In-season site visits were conducted across 280 monitoring locations in the footprints for classification 

purposes and more than 1665 field observations were made for accuracy assessment. A total rice area of 1.07 million ha was mapped 

with classification accuracy from 90.3 to 94.2 per cent with Kappa values ranging from 0.81 to 0.88. Using ORYZA2000, a weather 

driven process based crop growth simulation model developed by IRRI, yield estimates were made by integrating remote sensing 

products viz., seasonal rice area, start of season and backscatter time series. By generating average backscatter for each time series and 

dB stack for each SoS, LAI values were estimated. The model has generated rice yield estimate for each hectare which were aggregated 

at administrative boundary level and compared against CCE yield. Yield Simulation accuracy of more than 86-91% at district level and 

82-97% at block level from the study indicates the suitability of these products for policy decisions. SAR products and yield information 

were used to meet the requirements of PMFBY crop insurance scheme in Tamil Nadu and helped in identifying or invoking 

prevented/failed sowing in 529 villages and total crop failure in 821 villages. In total 303703 farmers were benefitted by this technology 

in getting payouts of INR 9.94 billion through crop insurance. The satellite technology as an operational service has helped in getting 

quicker payouts. 

 

INTRODUCTION 

 

Monitoring production of field crops is important for ensuring 

food security in India. Accurate and consistent information on 

the area under production is necessary for national and state 

planning but conventional statistical methods cannot always 

meet the requirements. This information is vital to the policy 

decisions related to imports, exports and prices, which directly 

influence food security. Fluctuation in domestic rice production 

has a significant impact on household food security. 

 

Satellite-based remote sensing offers a suitable and cost-

effective technique needed for regional- and national-scale crop 

monitoring by allowing retrieval of spatially distributed 

information on a large scale (Gumma et al. 2014). The use of 

remote sensing data for crop yield estimation has been 

demonstrated with reasonable success based on optical satellite 

remote sensing data from Landsat under European-type climate 

(Ferencz et al. 2004). However, in the context of rice in Asia, 

cloud cover is extensive and pervasive during the key crop 

growing season (Huke and Huke 1997) and therefore presents a 

critical obstacle for implementing satellite-based remote 

sensing techniques for crop monitoring. Radar-based remote 

sensing, for example, Synthetic aperture radar (SAR), provides 

a comparative advantage with its cloud-penetrating 

characteristics (Dwivedi, Rao, and Kushwaha 2000).  

Le Toan et al. (1997) demonstrated the application of C-band 

SAR data from RADARSAT for rice area mapping in 

experimental settings in Japan and Indonesia capturing long-

duration temperate rice and short-duration tropical rice, 

respectively. Likewise, others have documented the suitability 

of SAR for rice area mapping (Suga and Konishi 2008; Bouvet, 

Le Toan, and Lam-Dao 2009; Oh et al. 2009; Lopez-Sanchez, 

Ballester-Berman, and Hajnsek 2011; Inoue and Sakaiya 2013; 

Inoue, Sakaiya, and Wang 2014). Whereas these studies 

focused on a limited number of observation locations and thus 

limited scalability, Nelson et al. (2014) demonstrated an 

operational-orientated effort with extensive demonstration of 

rice area mapping with SAR in 13 geographical rice-growing 

locations across South and South-east Asia in the context of the 

Remote Sensing-based Information and Insurance for Crops in 

Emerging economies (RIICE) project (www.riice.org).  

 

Similar to the experience of rice area mapping, yield estimation 

using SAR has been documented, including the integration of 

SAR with a crop growth model (Homma, Maki, and Hirooka 

2017; Maki et al. 2017). However, these studies involved very 

limited quality assessment. Ferencz et al. (2004) simulated crop 

yield without the use of a process based crop growth model by 

empirically linking optical remote sensing data to crop yield. 
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This approach has the advantage of high processing efficiency 

for mapping context compared with the option of making 

computing-intensive yield simulation runs with a process-based 

crop growth model. The wide range of agronomic practises and 

environments in which the rice crop is grown poses a 

significant challenge to the option of using an empirical 

approach to estimate yield by directly exploiting remote 

sensing data alone without considering climate and other 

factors. Based on the accuracies obtained, over large area of 

TamilNadu, India, in rice mapping using rule based algorithm 

of MAPscape-RICE (Nelson et al., 2014) and yield estimation 

integrating SAR products and ORYZA crop growth model, this 

article presents the potential of Remote Sensing based products 

as an operational service in crop insurances.  

 

METHODS 

 

Pre-Processing of SAR data 

 

A fully automated processing chain developed by Holecz et al. 

(2013) was used to convert SAR GRD multi-temporal data to 

terrain geo-coded σ° values. The processing chain itself is a 

module within the MAPscape-RICE software. The basic 

processing chain included strip mosaicking, co-registration of 

images acquired with the same observation geometry and 

mode, time-series speckle filtering, terrain geocoding, 

radiometric calibration and normalization. Further Anisotropic 

non-linear diffusion (ANLD) filtering was done to smoothen 

homogeneous targets, while enhancing the difference between 

neighbouring areas. Removal of atmospheric attenuation - σ° 

values was corrected by means of an interpolator. 

 

Multi-Temporal σ° Rule-Based Rice Detection 

 

The multi-temporal stack of terrain-geocoded σ° images was 

input to a rule-based rice detection algorithm in MAPscape-

RICE. The temporal evolution of σ° is analyzed from an 

agronomic perspective, which also requires a priori knowledge 

of rice maturity, calendar and duration and crop practices from 

field information and knowledge of the study location. The 

temporal signature is frequency and polarization dependent and 

also depends on the crop establishment method and, to some 

extent, on crop maturity. This implies that general rules can be 

applied to detect rice, but that the parameters for these rules 

may need to be adapted according to the agro-ecological zone, 

crop practices and rice calendar.  

 

Use of Temporal Features to Guide Parameter Selection for 

the Rule-Based Classifier 

 

The choice of parameters was guided by a simple statistical 

analysis of the temporal signature of σ° values in the monitored 

fields. The mean, minimum, maximum, minimum ratio, 

maximum ratio and span ratio of σ° were computed for the 

temporal signature of each monitored field. These six statistics, 

called as temporal features, concisely characterize the key 

information in the rice signatures of the observed fields, and 

each one relates directly to one parameter. Hence, the values of 

the six temporal features from the monitoring locations were 

used to guide the classification.  

 

 

 

 

Rice Map Accuracy Assessment 

 

A standard confusion matrix was applied to the rice/non-rice 

validation points collected at each site. The overall accuracy of 

the rice/non-rice classification and the kappa value were 

recorded. The accuracy assessment is a comparison of the 

classified rice map against ground-truth data. To account for 

the lower resolution and the horizontal accuracy of the 

handheld GPS units relative to the pixel size, the validation 

data were collected in areas that had homogeneous land cover 

in a 50m radius. The observed land cover at the GPS validation 

points was compared to the mode value of the rice map pixels 

within a window that matched the radius used in the validation 

land cover assessment. 

 

Yield simulation and mapping 

 

Rice-YES interface developed by IRRI, assimilates key SAR 

products, namely, LAI and SOS, into ORYZA in order to 

generate a map of yield estimates. The software consolidates all 

the inputs required to run ORYZA and run each combination of 

geo-referenced pixels according to the LAI values derived from 

SAR and other spatial inputs, including weather and soil 

information.   The assimilation of SAR products begins after at 

least four SAR images have been acquired after the onset of the 

rice-growing season in the area (land preparation). Beginning 

40 days after crop establishment, SAR product assimilation into 

the crop forecasting system is implemented. During this early 

part of the rice-growing cycle, leaf expansion parameters can 

be effectively calibrated against real ground conditions inferred 

from satellite observations using radar technology. 

 

 

RESULTS AND DISCUSSION 

 

Rice Area Map 

 

Rice area map derived from multi-temporal C-band SAR 

imagery of Sentinel 1A for Cauvery delta Districts of 

TamilNadu, India during 2017-18 is presented in Fig.1. Late 

rice and early rice were combined into one class and 

distinguished from rice class in the map. Map accuracy 

considered any of the three rice subclasses as rice. In Total, a 

rice area of 1.072 million ha was mapped in 16 districts of 

TamilNadu covering 11259 villages. In-season site visits were 

conducted across 280 monitoring locations in the footprints for 

classification purposes and more than 1665 field observations 

were made for accuracy assessment. The accuracy assessment 

for the rice maps was conducted on a rice/non-rice basis, where 

all other land cover types were grouped into a single non-rice 

class. Accuracy assessments in the field were conducted in-

season, in the reproductive or ripening stage before harvesting. 

Rice areas in different districts were mapped with classification 

accuracy ranging from 90.3 to 94.2 per cent with a Kappa value 

of 0.81 to 0.88 (Table 1). 

 

Start of the Season 

 

The time series of images used to estimate, the start date of the 

growing season for each pixel. This is a critical input to the 
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crop model that estimates yield. It is also critical for estimating 

the area that has been planted at a given date. The start of the 

season map indicating the progress of planting / sowing in the 

study area is presented in Fig.2. The start of the season map 

indicated that, September to October was the peak season of 

planting coinciding with the onset of monsoon and release of 

water from Mettur dam. However, the planting during 2017-18 

was delayed upto November in Cauvery delta districts due to 

late release of water (Table 2). 

 

 
 

Fig. 1. Rice area map – Cauvery delta region, TamilNadu, 

India 

 

Table 1.Summary of site validation visits, rice area and 

accuracy assessments. 

 
Site 

No. 

Districts of 

TamilNadu 

Validation 

points 

Rice 

area (ha) 

Accuracy 

(%) 
Kappa 

1 Thanjavur 111  112246 92.6 0.81 

2 Thiruvarur 106 134113 94.2 0.88 

3 Nagapattinam 83 110668 90.3 0.81 

4 Tiruchirapalli 78  27226 89.1 0.78 

5 Cuddalore  102 86712 92.4 0.82 

6 Other districts 
1185 601321 86.9 - 92.5  

0.76 – 

0.83 

 Points and 

area (ha) 
1665 1072286 

 

 

 

 
Fig.2. Rice SoS map - Cauvery Delta 

 

Table 2. District wise rice area statistics (ha) at 12 days 

interval derived from start of season maps (2017) 

 

Rice yield estimation 

 

Incorporation of LAI from SAR into process-based rice yield 

simulation using ORYZA effectively captured spatial yield 

distribution during 2017-18 Samba season in Tamil Nadu, India 

as shown in Fig. 3.  The end of season yield estimates for rice 

derived integrating remote sensing products and ORYZA crop 

growth model were in the range of 2022 to 5494 kg ha-1 in the 

delta districts of Tiruchirapalli, Thanjavur, Tiruvarur, 

Nagapattinam, Ariyalur and Perambalur showing the capability 

of the methodology to capture spatial variations in rice yield. 

Further the methodology was effective in capturing crop 

failures resulting in poor yields of 214 to 255 kg ha-1
 in 

District 26 Sep  08 Oct  20 Oct  01 Nov  13 Nov  25 Nov  
Rice 

area(ha) 

Cuddalore 9723 15918 14328 30784 5698 3945 86712 

Nagapattinam 14480 8913 11160 52499 10644 2641 110668 

Thanjavur 20988 10667 17204 25024 11573 4522 112246 

Thiruvarur 7595 9021 14277 55370 19303 2893 134113 

Ramanathapuram 32710 27459 44185 11706 6901 745 123876 

Sivaganga 3237 3365 5568 2618 2095 1184 68509 

Pudukottai 10801 13547 6803 2205 1890 897 45243 

Ariyalur 2197 722 1987 1881 2384 3307 16588 

Perambalur 5038 152 1223 489 313 112 7385 

Karur 111 335 1027 649 1040 656 8402 

Tiruchirapalli 112 522 1273 2305 4559 3075 27226 

Thiruvallur 13313 18626 5884 6787 1090 646 50083 

Kancheepuram 10800 2246 1325 7469 7092 3923 54614 

Dindigul 8276 174 - 681 72 69 9743 

Thiruvannamalai 39540 6773 9057 629 12260 5227 105286 

Villupuram 17028 7393 20316 5064 27221 13519 111592 

Total 195948 125833 155617 206160 114135 47360 1072286 
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Ramanathapuram, Sivaganga and Pudukottai districts, where 

drought has caused yield reductions.  

 

 

 
 

Fig. 3. Rice Yield map 2017-18- Cauvery Delta 

 

 

The validation of the spatially generated rice yield was carried 

out in 100 locations of Tiruvarur district by comparing with the 

observed yield. At the monitoring sites the agreement was 

found to be from 81 to 96 per cent with the mean agreement of 

86.2 per cent for rice yields. The average errors as computed by 

RMSE and NRMSE were 403.9 kg ha-1 and 13.8 per cent 

respectively. 

  

Remote sensing for Prevented and Failed sowing 

 

A detailed map of the rice growing area detected from the 

analysis of Sentinel 1A data acquired during the monitored 

season was used to generate rice area statistics every 12 days at 

village level. Normal area sown figures for the notified villages 

were compared with the villagewise area generated using SAR 

data and the villages were identified for invoking prevented 

sowing wherever the area sown was less than 25 % with the 

reduction caused by delayed onset of  monsoon or water release 

from canal preventing the farmers from sowing or planting. 

 

 

Fig. 4a. Temporal signature for Failed sowing 

 
Fig. 4b. Temporal signature for Total Crop Failure 

 

Backscattering signature for crop field were generated using 

the dB stack derived from 11 date SAR images and the date of 

crop failure was assessed and the villages were identified for 

failed sowing (within thirty days after sowing) or total crop 

failure (beyond 30 days) as depicted in Fig. 4. 

 

Table 3. Number of villages identified for Prevented/Failed 

sowing and Total crop failure 

 

Year 
Villages 

Monitored 
PS/FS 

Crop 

Failure 

2017-18  1277  246  214  

2016-17  2516  529  821  

 

 SAR products and yield information were used to meet the 

requirements of PMFBY crop insurance scheme in Tamil Nadu 

and helped in identifying or invoking prevented/failed sowing 

in 529 villages and total crop failure in 821 villages. In total 

303703 farmers were benefitted by this technology in getting 

payouts of INR 9.94 billion through crop insurance. The 

satellite technology as an operational service has helped in 

getting quicker payouts and also to maximize the compensation 

which was due for the farmers ensuring the social protection 

and climate resilience. 
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