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ABSTRACT: Regional crop production prediction is a significant component of national food security assessment. 
Remote sensing has the advantage of acquiring soil surface and crop canopy radiation information, however it is 
hard to reveal the inherence mechanism of crop growth and yield formation. Crop growth models based on the crop 
photosynthesis, transpiration, respiration, nutrition are successfully applicable for yield estimation in simple point 
scale, however, they are hampered by the deriving of regional crop key input parameters. Data assimilation method 
which combines crop growth model and remotely sensed data has been proved the most potential approach in re-
gional yield estimation. Deqing County was taken as the study area. Based on the calibration and regional of the 
World Food Studies (WOFOST) model, WOFOST had been used to express the characteristic of time series LAI in 
crop growth season. To solve the system errors of coarse resolution data extracted LAI due to the mixed pixels effect, 
the corrected LAI was implemented by combining the field measured LAI data and the HJ-LAI temporal trend in-
formation. Time-series LAI was assimilated through combined corrected HJ-LAI and WOFOST simulated LAI 
during the whole growth stage with the ensemble Kalman filter (EnKF) algorithm. The assimilated optimal LAI was 
used to drive the WOFOST model per-pixel to estimate the regional yield. Scheduling the assimilation of different 
step length observed quantities, comparing the accuracy and the efficiency of the assimilation at different time scale, 
we selected the proper time scale of the assimilation. The results indicate that selecting the time scale of the step 
length between 10 days and 16 days about the assimilation of the remote sensing information and WOFOST model 
is more appropriate. Compared with the statistical yield, the coefficient of determination was 0.66 and RMSE was 
1.61 ton/hm. The results showed that assimilation of the remotely sensed data into crop growth model with EnKF 
can provide a reliable approach for estimate regional crop yield and had great potential in agricultural applications. 
The research can provide an important reference value for the regional crop production estimation. 

1. INTRODUCTION 

Rice is one of the most important crops in the world and provides staple food for more than half of the world’s 
population (Seck et al., 2012). China produced about one third of the world’s rice on about one fifth of the 
world’s paddy rice land. Therefore, accurate regional monitoring of rice growth and yield prediction have become 
crucial for national food security and sustainable agricultural development in China. However, most yield-
prediction methods still depend on conventional techniques, including predictions from agro-meteorological mod-
els and empirical statistical regression models between spectral vegetation indices and field-measured yields. One 
of the main drawbacks of such empirical regression models for estimating crop yields is that the models are only 
applicable for specific crop cultivars, crop growth stages, or certain geographical regions (Fang et al., 2011).  

Crop growth models, based on system analysis and computer simulation techniques, can dynamically describe the 

fundamental processes such as photosynthesis, respiration, biomass partitioning and soil water balance. Thus, crop 

models have emerged as the most potent tools for yield estimation, and they have been shown to be effective for 

various types of crops in different countries. Several studies have confirmed that such crop models can be success-

fully applied to crop yield prediction at field scale (Boogaard et al., 2013; Cheng et al., 2016). However, they are 

also found to be limited under regional-scale extrapolation for estimating crop yield owing to uncertainties in input 

parameters or initial conditions (Dorigo et al., 2007). In particular, these uncertainties include two different cases: 

parameters that are hard to obtain at pixel or field scale and parameters that change in a single growth season or 

over years. Obtaining additional unknown or variational input parameters is an effective way to address these prob-

lems; however, in general, it is extremely expensive and even infeasible. 
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Remotely sensed data offers strong advantages over other monitoring techniques by providing a timely, synoptic, 

and up-to-date overview of actual crop growing conditions over large areas at multiple stages during the growing 

season, and the data can be utilized in conjunction with crop models to improve prediction of crop yields at a range 

of spatial scales (Huang et al., 2015). Furthermore, remotely sensed data can be used to complement crop model 

simulation results under situations that are not accounted for by the model (de Wit et al., 2012). Thus, data assimila-

tion, an approach that incorporates field or other observations into dynamic mechanistic models, can produce more 

accurate estimates of model input parameters and state variables, and this approach has increasingly been used for 

crop growth monitoring and yield prediction, with considerable success (Ma et al., 2013; Wang et al., 2013). 

With the objective to improve model performance, reinitializes crop model parameters by minimizing the differ-

ences between crop state variables simulated by the crop model and derived from remote sensing (Yan et al., 2006).  

Since the 1980s, when Steve Maas first attempted to combine remote sensing (RS) data for modeling (Maas, 1988), 

several methods for assimilating RS data into crop models have been explored. The ensemble Kalman filter (EnKF) 

is used in the CERES-Wheat model, WOFOST model (Li et al., 2014; Zhao et al., 2013) and SWAP (soil–water–

atmosphere–plant) model (Huang et al., 2015) for many different crops.  

In order to meet the remote sensing requirements of short revisit intervals and large geographical areas at regional 

crop yield estimation with a data assimilation model, the low spatial resolution (AVHRR, MODIS and MERIS) type 

instruments are widely used, which lead to a more serious heterogeneity pixel effect. Such disadvantages can be 

overcome by the use of high spatial resolution instruments and wide extent coverage and high revisit frequency. The 

small satellite constellation for environment and disaster monitoring and forecasting (HJ-1A/B) was launched by 

China in 2008. Two CCDs were carried by each satellite with a spatial resolution of 30 m, every 3 or 4 days the 

satellite could revisit the same place. HJ-1A/B provides the advantage of capturing the key spatial and temporal 

variations in the growing season.  

In this paper, HJ-LAI data was assimilated into the WOFOST crop growth model using EnKF with the aim of pre-

dicting the yields in Deqing, Zhejiang province of China. The LAI time series profile was smoothed with Savitzky–

Golay filtering algorithm first. Then, the field measured LAI was used to correct HJ-LAI data product. In order to 

select the proper time scale of the assimilation, we also comparing the accuracy and the efficiency of the assimilation 

at different time scale. The local and regional parameters were chosen to be recalibrated through a global sensitivity 

analysis approach. Complete details of the proposed assimilation method and analysis results are presented in the 

following sections. 

2. MATERIALS AND METHODS 

2.1 Study Area 

Deqing County lies in the west of Hangjiahu Plain, with mean annual temperature ranging between 13 °C and 16 °C 

and annual precipitation of 1379 mm (Figure 1). The plain areas mainly distribute at the eastern Deqing, with the 

altitudes ranging from 4 m along the Beijing-Hangzhou Grand Canal to 721 m on the Tianmu Mountains. Deqing 

County is part of the single cropped rice growing region in the water network area of north Zhejiang (Xu and Wang, 

2001). Deqing has a total area of 936 km
2
, and the rice area in Deqing accounts for more than 91% of the major crop 

areas according to the statistical data of local agriculture department. The rice fields mainly concentrate in the eastern 

regions of Deqing with average elevation less than 20 m. 

2.2 The Crop Growth Model 

The WOFOST (World Food Studies) model which originates from the Center of World Food Studies located in the 

Netherlands was selected as a basis for our work (Doraiswamy et al., 2004), it is used for a quantitative analysis 

tool for the annual crop growth and yield formation process. WOFOST can simulate annual plant growth under 

certain weather and soil conditions, the basis of the simulation is physiological and ecological progress of crops. 

These progresses include light interception, CO2 assimilation, respiration, transpiration, dry matter accumulation 

and distribution. The model can simulate yield estimation in two different modes, the potential mode and the water-

limited mode. In the present study, the potential mode was employed. 

2.3 Field Campaign Data 

Field observation was conducted to obtain the important agronomic and biological parameters of rice during the 

entire growing season in the study area in 2013. 14 rice sample plots with areas larger than 200 × 200 m
2
 in Deqing 
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County were randomly chosen in order to measure vegetation characteristics (Figure 1).The measurements mainly 

included plant height, LAI, above ground biomass (AGB), plant density and yield. The corresponding rice phenolo-

gy dates and sample numbers for each date were recorded as well (Table 1). 

 

Figure 1 HJ-1A charge-coupled device (CCD) false-color composite image of the study area of Deqing County, 

Zhejiang Province, East China. 

Table 1 Dates of the field campaigns and corresponding HJ-1A/B CCD images with sample numbers for each date. 

No. Satellite Date Field Campaign Date 
Samples 

LAI AGB Plant Density 

1 HJ-1A 1 July 2013 3 July 2013 14 14 14 

2 HJ-1B 18 July 2013 17 July 2013 14 14 14 

3 HJ-1B 6 August 2013 6 August 2013 14 14 14 

4 HJ-1A 24 August 2013 24 August 2013 14 14 14 

5 HJ-1B 10 September 2013 9 September 2013 * 14 14 14 

6 HJ-1B 26 September 2013 26 September 2013 14 14 14 

7 HJ-1B 11 October 2013 12 October 2013 14 14 14 

8 HJ-1B 26 October 2013 27 October 2013 14 14 14 

9 HJ-1A 16 November 2013 15 November 2013 9 9 9 

The above ground parts of rice plants were separated into leaves, stems and ear (after ear differentiation) in the lab. 

The leaf areas of rice were measured using a leaf area meter (LI-3000C, with conveyor belt assembly, LI-3050C; 

Li-Cor, Inc., Lincoln, NE, USA). All plant parts were weighted by an electronic scale in fresh condition at first. 

Then they were put into the oven at 105 °C for 30 min and kept at 70 °C for 72 h until reach constant weight. The 

dry above ground biomass was weighted with the same electronic balance and scaled to total dry AGB m
2
 using 

plant density. The yield data was collected by harvested the rice into the laboratory. Official statistical yield data in 

2013 was also collected. 

2.4 Model Calibration 

The WOFOST model was developed mainly for Europe. Hence, before applying the model in other geographical 

regions, a large set of input parameters must be calibrated for accurately simulating the entire crop growth process. 

Generally, the WOFOST model requires weather, soil, crop and management parameters as inputs.   

Daily meteorological information was derived from Deqing weather station. These weather data provide daily esti-

mates of daily maximum and minimum temperature, wind speed, vapor pressure and precipitation. Information 

regarding radiation is not available from weather stations, and therefore radiation is usually estimated at the station 

level using daily sunshine hour information. 

Sensitive soil parameters such as saturated soil moisture content, bulk density, water content at field capacity and 

wilting point were collected from the local agriculture department and literatures. Other soil input parameters for 

the study area were derived from the 1:1,000,000 China soil database (http://www.soil.csdb.cn). 

Although most of the crop parameters are genetic properties that can be decided by the crop varieties, they were 
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determined and estimated through field measurements and were also based on the scientific works and literatures in 

this study area. Two important temperature accumulation related crop parameters, temperature sum from emergence 

to anthesis (TSUM1), and temperature sum from anthesis to maturity (TSUM2), were calculated by adding the 

daily average temperatures which are above 0 ° C (biological zero point) from reported phenology information from 

agro-meteorological station of Deqing County. 

In our present study, there are three main approaches used to determine input parameters in the WOFOST model 

according to their sensitivities. The least sensitive parameters were determined by the WOFOST defaults and relat-

ed literature. The relatively stable parameters on spatial region were determined by field campaigns and the local 

observational station. The highly sensitive parameters with spatial variability, such as AMAXTB, SPAN and 

SLATB were calibrated using the FSEOPT optimization algorithm developed by Stol (Stol et al., 1992).  Table 2 

lists the acquired method and values of primary crop parameters in the WOFOST model. 

Table 2 Main crop parameters of WOFOST model 

Parameters Description Unit Acquired method Values 

Phenology 

DLO Optimum daylength for development hr Literature 13 

TSUM1 Temperature sum from emergence to anthesis ℃·d Meteorological data 1650 

TSUM2 Temperature sum from anthesis to maturity ℃·d Meteorological data 700 

DTSMTB Daily  increase  in  thermal  time  as  function  of  average temperature ℃·d Literature 0-20 

DVSI Initial development stage - Field measured 0.10 

DVSEND Development stage at harvest - Custom 2 

Inital 

TDWI Initial total crop dry weight kg·ha
-1

 Field measured 50 

LAIEM Leaf area index at emergence ha·ha
-1

 Field measured 0.15 

RGRLAI Maximum relative increase in LAI ha·ha
-1

·℃·d Field measured 0.007 

Green Area 

SLATB Specific  leaf  area  as  a  function  of  development  stage ha·kg
-1

 Field measured 0.001-0.0025 

SSATB Specific  stem  area  as  function  of  development  stage ha·kg
-1

 WOFOST default - 

SPAN Life span of leaves growing at 35 ºC d FSEOPT 30 

TBASE Lower threshold temperature for ageing of leaves ℃ Literature 10.0 

Conversion of Assimilates into Biomass 

CVL Conversion efficiency of assimilates into leaf kg·kg
-1

 Literature 0.754 

CVO Conversion efficiency of assimilates into storage organ kg·kg
-1

 Literature 0.584 

CVR Conversion efficiency of assimilates into root kg·kg
-1

 Literature 0.654 

CVS Conversion efficiency of assimilates into stem kg·kg
-1

 Literature 0.654 

Maintenance Respiration 

Q10 Relative change in respiration rate per 10 °C - Literature 2 

RML Relative maintenance respiration rate leaves kg·CH2O·kg
-1

·d WOFOST default 0.020 

RMO Relative maintenance respiration rate storage organs kg·CH2O·kg
-1

·d WOFOST default 0.003 

RMR Relative maintenance respiration rate roots kg·CH2O·kg
-1

·d WOFOST default 0.010 

RMS Relative maintenance respiration rate stems kg·CH2O·kg
-1

·d WOFOST default 0.015 

Partitioning 

FRTB Fraction of total dry matter increase partitioned to roots as a function of 

development stage 

kg·kg
-1

 Field measured 0-0.55 

FLTB Fraction of above ground dry matter increase partitioned to leaves as a 
function of development stage 

kg·kg
-1

 Field measured 0-0.6 

FSTB Fraction of above ground dry matter increase partitioned to stems as a 

function of development stage 

kg·kg
-1

 Field measured 0-0.52 

FOTB Fraction of above ground dry matter increase partitioned to  storage  

organs  as  a  function  of  development  stage 

kg·kg
-1

 Field measured 0-1 

 

2.5 Remote Sensing Data and LAI Calculation Model 

HJ-1 CCD data from June to November in 2013 over the study area were downloaded from the China Centre for 

Resources Satellite Data and Application (CRESDA). A total of 54 scenes of HJ-1A/B images with cloud cover less 

than 20% during the rice phenology in the study area were selected for the following procedures. All the images 

collected were all processed through radiometric calibration, atmospheric correction and geometric correction. The 

formula and coefficients for radiometric calibration were collected from the raw image package. The atmospheric 

correction was performed using the Moderate Resolution Transmission (MODTRAN) 4 model integrated in the 

Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) module in the Environment for Visu-
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alizing Images (ENVI) package. The images were co-registered using the Second National Soil Survey Vector Map 

(scale 1:10,000) provided by the Deqing County Land and Resources Bureau, and the geometric accuracy was less than 

0.5 pixel (15 m).   

Before assimilation, time-series LAI data are required. Only cloud-free images that correspond to each field cam-

paign date within 3 days were selected for LAI modeling. Using Savitzky-Golay (S-G) filters, daily vegetation 

index (VI) time-series were created from all the HJ-1 CCD images. For the entire growing season, NDVI and LAI 

of one crop showed a similar trend of first rising then falling, whereas the rate did not remain the same. Thus, one 

VI value might match two different LAI values, one from an earlier stage and the other from a later stage of the 

growing season. Therefore, two models were selected to simulate LAI for earlier and later stages. As the rice LAI 

drops after heading, in the present study, the growth stages of rice were divided into before-heading and after-

heading in order to improve the estimation results. The LAI calculation model was established using a dynamic 

method proposed by Wang (Wang et al., 2016), before-heading LAI estimation used EVI2-BPNN (back propaga-

tion neural network) regression, and after-heading LAI estimation used NDVI-SVM (support vector machine) re-

gression.  

2.6 EnKF Asimilation Mthod 

The Ensemble Kalman Filter (EnKF) is an optimal recursive data assimilation method. The EnKF performs a model 

forecasting where the model responses (state variables) are propagated forward in time based on the model dynam-

ics and a filter update in which the ensemble of the model state is adjusted through incorporating available observa-

tions. Readers interested in the EnKF are referred to these studies (Evensen, 2003; Evensen, 2006) for more details. 

HJ-LAI was assimilated into the WOFOST model to allow evaluation of the yield estimation accuracy. The whole 

process is illustrated in Figure 2. 

 

Figure 2 Flowchart of rice yield forecasting 

3. RESULTS AND DISCUSSION 

3.1 Influence of LAI Time Steps  

Previous research indicated that time steps have great impacts on the EnKF assimilated LAI (Wit and Diepen, 

2007). In the present study, we have tested different time steps of EnKF assimilation, we set different time steps 

of  4, 10, 16 and 20 days (scale 1 to scale 4) to analyze the effect and chose the best one to derive the final optimal 

results. Our testing indicated that the larger the assimilation step size, the greater the fluctuation of the LAI profile 

and vice versa as made clear in Figure 3-4.  

When the step decreased from 4 days to 10 days (Figure 3), the assimilation time decreased from 17.4 s to 15.8 s, 

and the time of scale 3 and scale 4 is 15.2 s and 15.0 s, respectively. It proved that the assimilation efficiency 

increased to a certain extent with the increase of the assimilation time step. 

Analysis from the accuracy of assimilation (Figure 4), the coincidence between LAI time series curve simulated 

by scale 1 and measured value was the highest, RMSE was 0.13, ARE was 3.6%. As the assimilation scale in-

creased, the accuracy decreased significantly. When the time interval is 20 days, the RMSE reaches 0.3 and the 

ARE is 22.1%. The error between the final yield and the above-ground dry biomass results and measured values at 
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the four assimilation steps also increased with time scale (Table 3). The RMSE and ARE of simulated yield and 

measured yield on a single point scale increased from 321 kg·ha
-1

 and 3.25% at scale 1 to 1575 kg·ha
-1

 and 15.96% 

at scale 4, respectively. The RMSE and ARE of above-ground dry biomass (TAGP) and measured values also 

increased from 265 kg·ha
-1

 and 1.55% of scale 1 to 2698 kg·ha
-1

 and 15.78% of scale 4, respectively. Scale 2 was 

moderate in four scales, and ARE of scale 2 was less than 10% in both LAI simulation and final yield formation. 

Through the above analysis, although the efficiency of assimilation scale had increased, the accuracy of assimila-

tion had decreased. This is because after the expansion of the assimilation scale, the amount of data at the key 

curve turning point becomes less, and it is easy to fit during assimilated process. Under the premise of balance 

accuracy and efficiency, we selected the time step of scale 2 (10 days) to estimate the regional potential rice yield. 

 

Figure 3 Assimilation efficiency at four equidistant time steps 

 

Figure 4 Assimilation accuracy of LAI at four equidistant time steps 

Table 3 Assimilation result of yield (WSO) and above-ground dry biomass (TAGP) at four equidistant time steps 

 
Measured Yield Scale 1 Scale 2 Scale 3 Scale 4 

WSO（kg·ha
-1） 9869 10190 10564 11401 11444 

ARE（%） - 3.25 7.04 15.52 15.96 

RMSE（kg·ha
-1） - 321 695 1532 1575 

TAGP（kg·ha
-1） 17094 17359 17928 18952 19792 

ARE（%） - 1.55 4.88 10.87 15.78 

RMSE（kg·ha
-1） - 265 834 1858 2698 
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3.2 EnKF Assimilation Yield Estimation in Potential Mode 

Based on the rice area extraction results in the study area, combined with the rice transplanting period information 

extracted by HJ-1 CCD satellite (rice is usually transplanted within 20 days after sowing) as the initial input parame-

ter of the WOFOST model, the rice yield estimation result of the study area was calculated pixel-by-pixel, and the 

output WSO value of the corresponding pixel is the corresponding yield. The estimated results were compared with 

the field values, as shown in Figure 5-6. 

 

Figure 5 Predicting yield of rice in Deqing County by assimilating the WOFOST model and remote sensing 

 

Figure 6 Correlation of rice measured yield and modeled yield after assimilation 

The results showed that there was a significant correlation between the measured value and the assimilation simula-

tion value. The R
2
 of the simulated and measured values was 0.66, the RMSE was 1.61 ton·ha

-1
, and the average 

relative error ARE was 10.74%. . Overall, the yield results using remote sensing assimilation were overestimated 

compared to the measured values. This is because the model used a potential productivity model, which did not take 

the actual water and fertilizer situation into account, and did not consider the different genetic characteristics of dif-

ferent rice varieties, only the estimation results of the dominant varieties were considered.  

In order to improve the accuracy of model estimation, more accurate input parameters are needed to improve the 

accuracy of area extraction and rice phenology identification. At the same time, the accuracy of assimilation state 

variables in time series can be further improved, and the source of model uncertainty can be reduced. In the regional 

distribution of rice yield, rice planting area in the western mountainous areas is small, scattered, and there are few 

high-yielding fields. Combined with the distribution of rice in Deqing County and the distribution map of grain pro-

duction functional areas in Deqing County, high-yield fields are usually located in areas where rice fields are concen-

trated, or in grain production functional areas. It is proved that with the establishment and improvement of the grain 

production functional zone, unified management measures can make rice yield closer to potential yield. 
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4. CONCLUSIONS 

In this study, we combined rice area mapping results, rice phenology data extraction results and remote sensing time 

series information results, assimilation remote sensing data and WOFOST model to estimate rice yield in the study 

area. Firstly, using the field measured data and FSEOPT to localize the model parameters of the main rice varieties in 

the study area, the parameter localization results showed that the crop model can better characterize the growth param-

eters of rice at a single point scale. The remote sensing information and model assimilation schemes select the Kalman 

filter method, and discuss the influence of different assimilation stepss on the assimilation results. Finally, under the 

consideration of balance assimilation efficiency and precision, the 10 days LAI remote sensing step is used to estimate 

the regional rice yield. The model simulation results were in good agreement with the measured results. Compared 

with the field measured values of the rice samples, R
2
 is 0.66 and the RMSE is 1.61 ton·ha

-1
. The results show that the 

WOFOST model can be used for regional scale rice yield estimation, providing valuable information for accurate 

farming and improved cultivation management. 
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