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ABSTRACT Land surface temperature (LST) is an essential indicator for detecting climate change due to its role in 

providing information regarding the energy balance process on the earth’s surface. In understanding the climate process 

of an area, it is important to study the influence of land cover on LST. However, over mountainous areas, such studies 

are limited mostly because of the strong effect of topography on LST. In this study, the relationship between land cover 

and LST distribution in the Mount Papandayan area, West Java, Indonesia was analyzed using Landsat 8 OLI/TIRS 

imagery.  To estimate LST, single-channel algorithm and land surface emissivity (LSE) correction through NDVI-

based method (NBEM) were used. The effect of topography on LST was then normalized using a multi-linear 

regression model from digital elevation model (DEM) and solar irradiance. Land cover classification was done using 

object-based image analysis (OBIA) through multi-resolution segmentation and threshold classification combined with 

nearest neighbor (NN) classification. The results reveal that the effect of topography on LST was reduced after 

correction. LST in the Mount Papandayan area ranged from 14.27 to 40.01°C with a mean value of 23.77°C. The 

distribution of mean LST across land cover types was found to be the highest in crater area (29.59°C), followed by 

built-up (26.91°C), cropland (25.64°C), tea plantation (24.16°C), pasture (23.56°C), shrub (22.40°C), and forest area 

(20.63°C). The difference between the mean LST of each land cover and the mean LST of the whole study area 

indicates the heating or the cooling effect of each land cover type on the area.  By using the mean LST of the study area 

as the reference LST, it can be inferred that crater, built-up, cropland, and tea plantation land cover types contribute to 

heating the area, whereas pasture, shrub, and forest area contribute to cooling the area. From this study, it can be 

concluded that in the Mount Papandayan area, the distribution of LST across land cover types was the highest in crater, 

followed by built-up, cropland, tea plantation, pasture, shrub, and forest. 

 

1 INTRODUCTION 

 

Land surface temperature (LST) is a thermal infrared remote sensing product which displays the kinetic temperature 

of the surface of the earth from the satellite’s sensor point of view. Thermal infrared remote sensing deals with data 

that are acquired in the thermal infrared (TIR) domain of the electromagnetic spectrum. In most cases, the wavelength 

in which TIR radiation of the earth is measured ranges between 3-5 µm and 8-14 µm due to atmospheric window 

(Sabins, 2007). LST retrieval using remote sensing is possible because every object that has a kinetic temperature 

above 0 K (273 ˚C) emits electromagnetic radiation. With a kinetic temperature around 300 K, earth emits 

electromagnetic radiation that peaks in the TIR domain (Kuenzer & Dech, 2013; Sabins, 2007). As a measurement of 

how cold or hot the surface of the earth is, LST provides information regarding energy exchange between land and 

atmosphere. Due to its importance in the surface-atmosphere system, LST is specified as one of the essential climate 

variables (ECVs) by the Global Climate Observing System (GCOS, 2016). 

 

In the last few decades, land cover conversion from vegetated area to impervious area is known to cause an increase 

in LST (Mallick et al., 2008). A rise in LST above a certain point can have an adverse impact on air quality, hydrology, 

carbon cycle, and biodiversity. In its association with air quality, high LST can result in the mixing of pollutants in the 

layer of air near the land surface, thus exacerbating pollution (Rao, 2014). In addition, surface heating drives the 

increase of air temperature and humidity (Pleim & McKeen, 2012). The warmer the air temperature is, the greater the 

amount of water vapor the air can hold. This can affect hydrologic cycles in terms of precipitation, soil moisture, water 

storage and run off (Stagl et al., 2014). Concerning the carbon cycle, higher LST is found to drive up carbon emissions 

into the atmosphere through the increase of soil respiration (Dilekoğlu & Sakin, 2017). More importantly, for 

biodiversity, a significant rise in LST can lead to a shift in the community composition, given that each species has 

different ability in adapting to environmental changes (Hannah et al., 2005).  
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Previous studies on the influence of land cover on LST have been attempted through different approaches to gain a 

deeper understanding of the climate process of an area. It is found that LST depends on surface land cover properties, 

such as the ability of a land cover to absorb solar radiation, heat and perform evapotranspiration (Bonan, 2016; Mallick 

et al., 2008). Across different regions, studies reported that LST is found to be higher in built-up areas, followed by 

bare soil, sparsely vegetated areas, and densely vegetated areas (Feizizadeh et al., 2012; Mbithi et al., 2013; Sun et al., 

2012) Although such studies are common, few are done over mountainous areas due to the strong effect of topography 

on LST. In this study, the relationship between land cover and LST distribution in the Mount Papandayan area, West 

Java, Indonesia was analyzed using Landsat 8 OLI/TIRS imagery. 

 

2 STUDY AREA 

 

This study was done in the Mount Papandayan area of West Java, Indonesia which includes the tropical mountain 

forests of Mount Papandayan Nature Reserve, some parts of Kamojang Nature Reserve and the surrounding region 

(7.109-7.378 S, 107.660-107.824 E) (Figure 1). Mount Papandayan Nature Reserve is located in the center of the study 

area, observable as an elongated-shaped forest patch that extends from north to south. To the north lies the Kamojang 

Nature Reserve forest patch that stretches from east to west. Elevation within the area ranges from 877.4 to 2649.5 

masl with complex topography involving steep, hilly, mountainous regions. The Mount Papandayan area is classified 

as type B climate according to Schmidt and Ferguson classification system due to its annual rainfall and humidity that 

varies from 2500-3000 mm per year and 70-80% respectively (BBKSDA Jabar, 2016).  

 

 
Figure 1 Map of the study area 

© Landsat 8 image copyright 2018 USGS 

 

3 MATERIALS 

 
3.1 Remote Sensing Data 

 
The main data used in this study is Landsat 8 OLI/TIRS satellite imagery acquired on August 16, 2018. Preprocessing 

including atmospheric and topographic correction was done for band 1 to band 7 using the ATCOR3 module in 

ERDAS IMAGINE 2014. Other supporting data used are Indonesia’s official contour and road vectors issued by Badan 

Informasi Geospasial. The digital elevation model (DEM) was generated from the contour vector.  
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3.2  Field Data 

 
In situ observation was done to obtain ground truth points in March 2019. Data taken were coordinate locations using 

Garmin GPS receiver 62S, photos, and land cover descriptions. To facilitate data collection, an Android application 

called Open Data Kit (ODK) Collect was used.  

 
4 METHODOLOGY 

 

4.1 Land Surface Temperature (LST) Retrieval 

 

LST retrieval in this study was carried out using the raster calculator tool in ArcMap 10.4. The general steps covered 

land surface emissivity (LSE) estimation, radiometric correction for Landsat TIRS data, LST estimation using single-

channel algorithm from known LSE and topographic correction for LST. Workflow for LST retrieval is shown in 

Figure 2. 

 

 
Figure 2 Workflow for LST retrieval  

LSE is an important parameter for surface characterization in LST retrieval. Here, LSE estimation was done using 

normalized difference vegetation index or NDVI-based method (NBEM). As the term suggests, the method is based 

on the statistical relationship between NDVI and LSE (Sobrino et al., 2008; Tang & Li, 2014). LSE was calculated 

using Equation (1), as written below, 

 

 

  

(1) 

 

where 𝜀𝑠𝜆 is soil emissivity (0,9668), 𝜀𝑣𝜆 is vegetation emissivity (0,985), NDVIS is the NDVI value of a pixel which 

consisted only of bare soil (0,1) and NDVIV is the NDVI value of a fully vegetated pixel (0,8) (Jiménez-muñoz et al., 

2009; Carlson & Ripley, 1997). NDVI and proportion of vegetation (Pv) were calculated using Equation 2 and 

Equation (3) (Carlson & Ripley, 1997) as follows,  

 
 

𝑁𝐷𝑉𝐼 =  
𝑏𝑎𝑛𝑑 5 (𝑁𝐼𝑅) − 𝑏𝑎𝑛𝑑 4 (𝑅𝑒𝑑)

𝑏𝑎𝑛𝑑 5 (𝑁𝐼𝑅) + 𝑏𝑎𝑛𝑑 4 (𝑅𝑒𝑑)
 (2) 

 

𝑃𝑣 = (
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼𝑣 − 𝑁𝐷𝑉𝐼𝑠
)

2

 (3) 
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From the known LSE value, LST can be estimated. The method chosen for LST retrieval depends on the number of 

thermal infrared band available. Landsat 8 TIRS has two thermal infrared bands, which are band 10 and band 11. 

However, since 2014 USGS suggested discontinuing the use of band 11 for split-window algorithm in LST retrieval 

due to calibration error (USGS, 2017). For that reason, this study utilized band 10 (10.6-11.19 µm) for LST retrieval 

using single-channel algorithm developed by Jiménez-muñoz et al. (2009). 

 

Before calculating the LST, radiometric correction had to be applied first to band 10 imagery by converting digital 

number to at-sensor spectral radiance or 𝐿𝜆 (Equation 4) and 𝐿𝜆  to top of atmosphere brightness temperature or BT 

(Equation 5) as follows, 

 

 𝐿𝜆 = 𝑀𝐿 × 𝑄𝑐𝑎𝑙  + 𝐴𝐿 (4) 

 
𝐵𝑇 =

𝐾2

ln (
𝐾1
𝐿𝜆

− 1)
− 273,15 

(5) 

 

where 𝑄𝑐𝑎𝑙  is band 10 digital number, 𝑀𝐿 is band-specific multiplicative rescaling factor, 𝐴𝐿 is band-specific additive 

rescaling factor, 𝐾1 and 𝐾2 are band 10 thermal constants. The values for 𝑀𝐿, 𝐴𝐿 , 𝐾1 and 𝐾2 can be found in the 

imagery’s metadata file (USGS, 2019). 

 

After radiometric correction for band 10 was done, LST was calculated using single-channel algorithm (Jiménez-

muñoz et al., 2009) through Equation 6 as follows,   

 

 
 

𝑇0 = 𝛾 (
𝜓1𝐿𝜆 + 𝜓2

𝜀𝜆
+ 𝜓3) + 𝛿 (6) 

 

where T0  is LST (˚C) before topographic correction. Parameters 𝛾 and 𝛿 were estimated using Equation 7-8, while 

atmospheric functions 𝜓1, 𝜓2, and 𝜓3 were estimated using  Equation 9-11 radiation (Jiménez-muñoz et al., 2009), 

respectively, 

 

 𝛾 =
𝐵𝑇2

1,324 𝐿𝜆
 (7) 

 𝛿 = 𝐵𝑇 −
𝐵𝑇2

1,324
 (8) 

 𝜓1 =
1

𝜏
 (9) 

 𝜓2 = −𝐿𝑑 −
𝐿𝑢

𝜏
 (10) 

 𝜓3 = 𝐿𝑑 (11) 

 

where 𝜏 is atmospheric transmission, 𝐿𝑢 is upwelling radiation, and Ld is downwelling estimated using Atmospheric 

Correction Parameter Calculator (Barsi et al., 2003). 

 

Last, topographic correction had to be done to minimize the effect of topography on LST. This step is important, 

especially because the study area contains mountainous region. Using Equation 12 which is modified from Malbéteau 

et al. (2017), LST was estimated as follows,  

 

 𝑇𝑐𝑜𝑟𝑟 = 𝑇0 − 0,4(𝑇𝑀𝐿 − 𝑇𝑀𝐿
̅̅ ̅̅ ̅)  (12) 

 

where 𝑇𝑐𝑜𝑟𝑟  is LST after correction, 𝑇𝑀𝐿  is LST simulated from topography effects, and  𝑇𝑀𝐿
̅̅ ̅̅ ̅ is the average of LST 

simulated from topography effects. Modification was done by adding 0.4 as a constant for 𝑇𝑀𝐿 − 𝑇𝑀𝐿
̅̅ ̅̅ ̅ which means 

that for this study area, only 40% of the topography effect was corrected. 𝑇𝑀𝐿  was calculated using Equation 13 

(Malbéteau et al., 2017) as written below, 

 

 𝑇𝑀𝐿 =  𝑇0̅ + 𝐴𝐸(𝐸 − 𝐸̅) + 𝐴𝑅𝑔(𝑅𝑔 − 𝑅𝑔̅̅ ̅̅ ) (13) 

 

Where E is elevation from DEM, 𝑅𝑔 is solar irradiance in kW/m2, 𝐴𝐸 and 𝐴𝑅𝑔 is multi-linear regression coefficient 

for elevation and solar irradiance. Solar irradiance (𝑅𝑔) was estimated using the area solar radiation tool in ArcMap 

10.4.1 by dividing solar radiation raster with duration raster.   
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4.2 Land Cover Classification 

 

For classification purpose, Mount Papandayan area was categorized into seven land cover classes, which are forest, 

shrub, pasture, tea plantation, cropland, built-up, crater, and water body (Table 1). The selection of these land cover 

classes was adapted from the study done by Primajati et al. (2011) in the same region. To carry out the classification 

using object-based image analysis (OBIA), eCognition Developer software was used. The steps included segmentation, 

a combination of threshold and nearest neighbor (NN) classification and manual editing. 

 

Table 1 Land cover class description 

Land Cover Class Description 

Forest Areas dominated by trees 

Shrub Areas covered by shrub, herbaceous plants, and sparsely arranged trees  

Pasture Areas dominated by grass 

Tea plantation Areas dominated by tree plantation 

Cropland Uncultivated and cultivated agricultural land, including paddy fields 

Built-up Areas covered by buildings and roads 

Crater Depression area in the form of open land covered by sulfur sediment, rocks, and bare 

soil caused by volcanic activity 

Water body Areas covered by water, such as lake and pond 

 

The first step in land cover classification using OBIA was segmentation. Here, multi-resolution segmentation was 

employed to Landsat 8 OLI imagery band 1, 2, 3, 4, 5, 6, and 7. Parameters applied were set to 30 for scale, 0.02 for 

shape, and 0.5 for compactness.  

 

The segmented objects were then classified into forest, shrub, tea plantation, cropland, built-up, cloud, and water body 

using the classification scheme depicted in Figure 3. Classifiers used here were nearest neighbor (NN) and threshold 

classifier. NN classifier used training samples and defined feature spaces to classify the objects. To determine which 

feature spaces or bands were best for NN classification in each step, feature space optimization was applied. For 

threshold classification or fuzzy membership function classification, the user’s expert knowledge was used to classify 

the objects by defining rules and thresholds. Here, the classification was done through several intermediate land cover 

classes which later were classified or re-assigned to the final land cover classes, excluding pasture and crater. 

Refinement using NN, threshold, and manual classification was also performed for incorrectly classified objects. 

Lastly, due to their specificity and locality, pasture and crater classes were classified manually.   

 

 
Figure 3 Classification scheme used for classifying forest, shrub, tea plantation, cropland, built-up, cloud, and water 

body 
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The resulting land cover map was then validated using accuracy assessment based on the ground truth data. The ground 

truth data were obtained from field observation conducted in March 2019 and high-resolution imagery from Google 

Earth (2019) taken in 2018. Due to difficult terrain in the field, ground truth points were chosen using stratified random 

sampling combined with occasional sampling. A total of 288 ground truth points were then used to create an error 

matrix. From the error matrix, producer’s accuracy, user’s accuracy, overall accuracy, and Kappa statistic were 

calculated. 

 
4.3 Data analysis 

 
To analyze the relationship between land cover and LST distribution, values of each pixel from LST map and land 

cover map were extracted. Statistical analysis was then done in SPSS Statistics 25. Kolmogorov-Smirnov normality 

test was used to check the data distribution. Kruskal-Wallis test and post hoc test were then applied to the non-normal 

data to analyze whether the average LST of each land cover differs significantly.  

 
5 RESULT AND DISCUSSION 

 

5.1 LST Retrieval 

 

Mount Papandayan LST map before and after topographic correction is shown in Figure 4. There are several ways to 

evaluate the effectiveness of topographic correction for LST. One of them is through visual observation. Before 

topographic correction (Figure 4a), it can be seen that the east-facing slope of the mountain ridge (depicted by the 

black arrow) that is exposed to the sun has a higher LST than the west-facing shaded slope. After topographic correction 

(Figure 4b), no contrasting LST difference is visually observed from either side of the mountain ridge.   

 

 
Figure 4 Mount Papandayan LST map (a) before topographic correction (b) after topographic correction 

Considering that the aim of topographic correction is to minimize the effects of topography by estimating the LST that 

would be observed on flat terrain (Malbéteau et al., 2017), LST for lower elevations is expected to decrease and LST 

for higher elevations is expected to increase. Therefore, after topographic correction, LST range and standard deviation 

become narrower as shown in the summary statistics of Mount Papandayan area’s LST (Table 2). This phenomenon 

can also be observed visually in Figure 4, where the formerly dark blue-colored mountain (Figure 4a) becomes light-

colored after topographic correction (Figure 4b). 

 

Aside from visual observation, the success of topographic correction can be evaluated by analyzing the correlation 

LST (˚C) 

(a) (b) 
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between LST and topographic parameters. Here, the topographic parameter taken into account is solar irradiance 

(Zhang & Gao, 2011 in Malbéteau et al., 2017). After correction, the correlation coefficient between LST and solar 

irradiance drops from 0.32 to 0.22, suggesting that the topography effect is successfully minimized. 

 

Table 2 Summary statistics of Mount Papandayan area’s LST before and after topographic correction 

Statistics LST Before Topographic 

Correction (˚C) 

LST After Topographic 

Correction (˚C) 

Minimum LST  13.64  14.27  

Maximum LST  40.10  40.01  

Average LST 23.77  23.77  

Standard Deviation LST 3.69  3.23  

Correlation coefficient 

between LST and solar 

irradiance 

0.32  0.22  

 

5.2 Land Cover Classification 

 
Land cover classification result for Mount Papandayan can be seen in Figure 5. From the accuracy assessment, an 

overall accuracy of 79.9% was obtained. According to Loveland et al. (2005), an overall classification accuracy of 

around 75% is common for a large study area, especially when done with non-manual interpretation. Aside from the 

size of the area being mapped and the method employed, accuracy is also greatly influenced by the number of classes 

used. To further justify the result, Kappa statistic was calculated. A value of 0.75 was obtained, indicating that the land 

cover map is considered as substantial following the categorization by Landis and Koch (1977). The total area mapped 

is 51196.41 ha. Most of the area belongs to cropland (24623.73 ha) and forest (14974.74 ha). The rest is composed of 

shrub (4806 ha), tea plantation (4035.06 ha), built-up (2136.87 ha), pasture (485.91 ha), crater (124.92 ha) and water 

body (9.18 ha). 

 

 

      
Figure 5 Land cover map of Mount Papandayan Area 

Mount 

Papandayan 

Area  
 

Land Cover Map  

2018 
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5.3 Relationship between Land Cover and LST 

 
Figure 6 demonstrates the LST distribution across land cover classes. From the statistical analysis, it is known that the 

average LST of each land cover differs significantly from one another. Average LST from the lowest to the highest 

belongs to forest, shrub, pasture, tea plantation, cropland, built-up and crater, respectively. A similar pattern is also 

observed in previous researches concerning the influence of LST on land cover in forest or densely vegetated land, 

pasture, cropland, and impervious land (Hua & Ping, 2018; Latif & Kamsan, 2017; Sun et al., 2012).  

 
Figure 6 LST distribution for each land cover class (* significant differences p < 0.05) 

In addition to exhibiting the pattern of LST for each land cover class, Figure 6 also demonstrates the comparison 

between the average LST of each class (𝐿𝑆𝑇̅̅ ̅̅ ̅) and the average LST of the whole study area (𝐿𝑆𝑇̅̅ ̅̅
𝑎̅𝑟𝑒𝑎), excluding water 

body class. According to Zhou & Cao  (2019), by treating 𝐿𝑆𝑇̅̅ ̅̅
𝑎̅𝑟𝑒𝑎 as the reference LST, the contribution of each land 

cover class to heating or cooling of the area can be calculated. In Table 3, LST reduction or cooling effect of a land 

cover class compared to  𝐿𝑆𝑇̅̅ ̅̅
𝑎̅𝑟𝑒𝑎 is indicated by the negative value of 𝐿𝑆𝑇̅̅ ̅̅ ̅-𝐿𝑆𝑇̅̅ ̅̅

𝑎̅𝑟𝑒𝑎. Conversely, LST increase or 

heating effect of a land cover compared to  𝐿𝑆𝑇̅̅ ̅̅
𝑎̅𝑟𝑒𝑎 is specified by the positive value of 𝐿𝑆𝑇̅̅ ̅̅ ̅-𝐿𝑆𝑇̅̅ ̅̅

𝑎̅𝑟𝑒𝑎. Therefore, 

forest, shrub, and pasture are the source of cooling in the study area, while cropland, built-up, and crater are the source 

of heating. 

 

Table 3 LST statistics of each land cover along with LST reduction compared to average LST of the study area 

Land Cover Class 
𝑳𝑺𝑻̅̅ ̅̅ ̅ 

(°C) 

Min LST 

(°C) 

Max LST  

(°C) 

SD LST 

(°C) 
𝑳𝑺𝑻̅̅ ̅̅ ̅-𝑳𝑺𝑻̅̅ ̅̅ ̅

𝒂𝒓𝒆𝒂 

(°C) 

Forest 20.63 14.97 35.71 1.56 -3.17 

Shrub 22.40 14.88 36.17 2.14 -1.39 

Pasture 23.56 18.28 32.96 2.41 -0.23 

Tea Plantation 24.16 19.31 34.71 1.96 0.37 

Cropland 25.64 17.37 40.01 2.64 1.84 

Built-up 26.91 18.97 38.56 2.05 3.11 

Crater 29.59 19.09 35.87 3.27 5.80 

 

Forest has the lowest LST of all the other classes. Several factors that play an important part in generating low LST in 

forest are high rate of evapotranspiration and high turbulence. Evapotranspiration in forest is composed of transpiration 

from the tree canopy, canopy interception and barely of soil evaporation. Evapotranspiration reduces LST by releasing 

latent heat from forest surface to the atmosphere. Furthermore, forest has high turbulence due to high surface roughness 

caused by the height and density of the tree canopy. Turbulence carries air and heat resulting from the release of latent 

heat and sensible heat away from the forest surface (Bonan, 2016). 

 

Similar to forest, average LST of other vegetated land cover classes such as shrub, pasture, and tea plantation are 

affected by evapotranspiration and turbulence. For areas with low vegetation density, evapotranspiration is known to 
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be lower than those with high vegetation density (Wang et al., 2018). The same goes for turbulence, which decreases 

as canopy height declines (Bonan, 2016). These factors explain why shrub has lower LST compares to pasture and tea 

plantation. Specifically, in the study area, pasture is cooler than tea plantation presumably because of its spatial 

arrangement. Pasture patches in Mount Papandayan area are relatively small in size and distributed inside forests, 

causing it to be highly impacted by the cooling effect of forest. 

 

Cropland has a comparatively high LST with a wide range and high standard deviation. This wide range of LST is 

influenced by the heterogeneity of vegetation density in cropland class that includes both uncultivated and cultivated 

land. LST of uncultivated cropland is in contrast to that of cultivated cropland. Uncultivated cropland in the form of 

bare field has low evapotranspiration and turbulence, resulting in higher LST (Bonan, 2016). 

 

In the study region, built-up class serves as a contributor of heating. Slightly different from vegetated areas, here albedo 

plays an important role in increasing the LST. Asphalt roads and dark-roofed buildings have low albedo that causes 

them to absorb most of the incoming energy and accumulate heat. Conversely, for bright-colored roofs and roads, 

albedo does not count as the source of heating (Forman, 2014). In the Mount Papandayan area, most of the settlements 

have clay roofs, which are known to have a cooling effect (Lesado & James, 2018). However, hydrocarbon and aerosol 

pollution produced from human activity often darken road and roof surfaces, thereby increasing their albedo and LST. 

Furthermore, built-up land cover tends to have less vegetated and bare soil areas, causing less latent heat from 

evapotranspiration escaping from the surfaces  (Forman, 2014). 

 

Crater has the highest LST among other classes. Mount Papandayan’s crater area is mostly covered by sulfur sediment, 

rocks and bare soil with scarce vegetation stands. This results in low evapotranspiration and high LST. Moreover, there 

are several fumaroles scattered in the crater area. These fumaroles have temperatures ranging from 200 to 280˚C 

according to Badan Geologi Kementerian ESDM (2016). 

 
6 CONCLUSIONS 

 

This research analyzed the relationship between land cover and land surface temperature (LST) in Mount Papandayan 

Area, West Java, Indonesia using Landsat 8 OLI/TIRS imagery. Topographic correction for LST is considered as 

successful, resulting in LST ranging between 14.27 and 40.01°C with a mean value of 23.77°C. LST was found to be 

the highest in crater area (29.59°C), followed by built-up (26.91°C), cropland (25.64°C), tea plantation (24.16°C), 

pasture (23.56°C), shrub (22.40°C), and forest area (20.63°C). By using the mean LST of the study area as a reference 

LST, it is discovered that crater, built-up, cropland, and tea plantation contributed to heating the area, while pasture, 

shrub and forest area contributed to cooling the area.  
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