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ABSTRACT: Traditional plant disease detection is time consuming and costly, thus an inexpensive and faster 
alternative method of detection is needed to send early warning to farmers to prevent pests and disease infestation 
and for proper intervention. To provide timely and accurate detection in twister disease of onion, remote sensing 
was exploited using Sentinel 2 imageries. Vegetation indices (VIs) derived from the VIS-NIR region of the image 
were evaluated for their capability to detect twister disease. VIs were subjected to regression analysis to evaluate 
the relationship between vegetation indices and severity index of onion twister disease. Vegetation indices with 
strong relationship to twister disease were selected and further used in unsupervised ISODATA classification. 
Overall accuracy of classification generated from vegetation indices were calculated based on confusion matrix 
using ground truth points collected from field work to identify the most suitable index based on highest overall 
accuracy. It was found out that NDVI and GNDVI has the highest coefficient of determination (R2) indicating a 
strong relationship to the disease severity. Results of the classification show that GNDVI, PSSRa and NDVI 
obtained the highest overall accuracy. This indicates that these 3 VIs can be used for detection of twister disease in 
the field since it gives better discrimination and high accuracies. Hence, VI’s generated from Sentinel 2 imagery 
has the potential in detection, monitoring and management of twister disease of onion in the field. 

1. INTRODUCTION 

Twister disease of onion is caused by a facultative endophyte (living inside the plant) Gibberella moniliformis. It is 
a major onion pathogen in Central Luzon Region, Philippines, mainly in the Province of Nueva Ecija because it is 
the biggest onion producer in the country. The fungus causes twisting and discolouration of the leaves resulting to 
elongated neck and slender bulb aside from white, oval, sunken spots on the leaves (Alberto & Aquino, 2010). The 
disease causes 80-100 percent yield loss resulting to high price and shortages in supply of onion in the market. The 
traditional way of detecting disease is time consuming and costly. There is a need for alternative method of 
detection that is inexpensive and can generate faster results in order to address the shorter time from early warning 
to prevention and treatment.  

Remote sensing technology is a useful and effective means of recording the extent of damage by detecting changes 
in the plant canopy. Such technology may be the only practical means to effectively map disease because of the 
large numbers of infected areas and their irregular shapes within fields (Yang, 2014). Remote sensing has the 
potential to be used as an effective and inexpensive technique to identify diseased plants on a field scale, mainly 
because infected plants have different spectral response compared to healthy plants (Zhang et al. 2002). Remote 
sensing techniques make use of the characteristics of vegetation spectral reflectance to estimate bio-parameters of 
the vegetation. A vegetation index can be an indicator to describe the greenness, density and health of vegetation. 
One way to obtain crop biophysical parameters is ground truth data measurement which takes sample from 
vegetation. Satellite derived VIs provide another possible way to obtain the biophysical parameters of vegetation 
over large areas (regional or global scales) while still retaining the high temporal coverage (Frampton et al. 2013). 

Vegetation indices are combinations of surface reflectance of two or more wavelength. They highlight a specific 
property of vegetation which can simplify detection of damage level (Soloviov, 2014). Many different vegetation 
indices exist and each uses a different set of wavelength measurements for describing physiological attributes of 
vegetation, looking at either general properties of the plant, or at specific parameters of its growth (Lowe et. al. 
2017). A number of vegetation indices has been used for plant disease detection and mapping. Red edge based 
vegetation indices was used in detecting Ganoderma-infected oil palm trees plantation with 84% overall accuracy 
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(Shafri and Hamdan, 2009). Ashourloo et al. proposed two indices for wheat leaf rust (Puccinia triticina) detection. 
Both of the proposed indices (LRDSI 1 & 2) have high capability to estimate the leaf rust disease in wheat. Saddik 
et al. developed spectral disease indices (SDIs) for grapevine disease identification. It was demonstrated that using 
vegetation indices was, in general, better than using complete spectral data and that SDIs specifically designed for 
FD performed better than traditional SVIs in most of cases. The precision of the classification is higher than 90%.  

 
The present study aims to evaluate the vegetation indices (VIs) of Sentinel 2 for detection of twister disease of 
onion. Early detection of twister disease of onion will allow timely disease management resulting to yield loss 
reduction.  

2. MATERIALS AND METHODS 

2.1 Study Area 

This research was conducted in the Municipality of Rizal, Province of Nueva Ecija (Figure 1) which is comprised 
of approximately 3.47 Km2. The study site is located between (121.122407 N, 15.681508E). The area is usually 
planted with rice followed by onion from November to March.  

 

 

 

 

 

 

 

 

 

Figure 1. Location of the study area 

2.2 Field Data Collection  

Field data collection of twister infected onion was carried out during the onion cropping season 2019. Onion fields 
with early to mid-sign of twister infection were chosen for the study. The geographic location of healthy and 
infested onion were recorded using handheld GPS (Trimble Geo7x). One hundred (100) plants were randomly 
chosen and the severity index of twister was calculated following the rating scale developed by Alberto et al. 2018. 

2.3 Satellite Image Acquisition  

Sentinel-2A MSI image in the study area acquired on February 17, 2019 was downloaded from the Sentinel Science 
Hub of European Space Agency (https://scihub.copernicus.eu/dhus/#/home). Sentinel-2A has thirteen bands 
ranging from 443.9 nm to 2202.4 nm including four 10 m visible and near-infrared bands, six 20 m red edge, near 
infrared and shortwave infrared bands and three 60 m bands visible, near-infrared and shortwave infrared bands. 
The narrow red edge bands cover spectral regions of 703.9 nm, 740.2 nm and 782.5 nm that can be utilised for 
monitoring vegetation status (Kumbula et al., 2019).  
 
2.4 Image Pre-processing 

Atmospheric correction of Sentinel 2 image was done using Sentinel Application Platform (SNAP 6.0) software 
with the plugin Sen2cor 2.5.5 in the Sentinel-2A toolbox. The calibrated image was clipped to the study area extent. 
Bands with 20 m resolution (5, 6, 7, 8a) were re-sampled to 10 meter resolution using the nearest neighbor method. 
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A total of nine bands were used in generating vegetation indices for detection of onion twister disease as shown in 
Table 1. 

Table 1. Specifications of Sentinel-2 Bands used in this study. 
Sentinel-2 Bands  Wavelength (nm)  Bandwidth (nm) 

Band 2—Blue  496.6 98 
Band 3—Green  560.0 45 
Band 4—Red  664.5 38 
Band 8—NIR  835.1 145 
Band 5—Vegetation Red Edge  703.9 19 
Band 6—Vegetation Red Edge 740.2 18 
Band 7—Vegetation Red Edge 782.5 28 
Band 8a—Narrow NIR 864.8 33 

 

A number of vegetation indices (VIs) were generated using the Thematic Land Processing under the Optical tools 
of SNAP 6.0 shown in Table 2. The vegetation indices were subjected to regression analysis to evaluate the 
relationship between vegetation indices and severity index of onion twister disease. Vegetation indices with strong 
relationship to twister disease were selected and further used in the classification. 
 
 

Table 2. List of vegetation indices used in the study. 
Vegetation Indices Equation Reference 

SAVI (Soil Adjusted Vegetation Index) (NIR−R)/(NIR+R)x(1+L) Huete (1988) 
MTCI (MERIS Terrestrial Chlorophyll Index) (NIR - RE)/(RE - R) Dash and Curran (2004) 

NDI45 (Normalized Difference Index 4 and 5) (RE1 - R)/(RE1 + R) Delegido et al. (2011) 

NDVI (Normalized Difference Vegetation Index) (NIR-Red) / (NIR+RED) Gitelson and Merzlyak 
(1997) 

GNDVI (Green Normalized Difference 
Vegetation Index) (NIR - G)/(NIR + G) Gitelson et al. (1996) 

TSAVI (Transformed Soil Adjusted Vegetation 
Index) 

B(NIR−B⋅R−A)/ 
RED+B(NIR−A)+X(1+B2) (Baret and Guyot, 1991) 

MCARI (Modified Chlorophyll Absorption in 
Reflectance Index) 

[(RE - R) - 0.2(RE - G)]  
x (RE - R) Daughtry et al. (2000) 

PSSRa (Pigment Specific Simple Ratio for 
Chlorophyll a) (NIR /R) Blackburn (1998) 

 

2.5 Image Classification and Accuracy Assessment 

Eight (8) vegetation indices were used to classify healthy and twister infected onion in the image. Single-band 
image classification was carried out to assess the capability and sensitivity of each vegetation indices in classifying 
twister disease of onion. Onion field boundary was used to identify the onion area in the image and non-onion areas 
were masked out. Unsupervised ISODATA classification was used to identify the twister infected and non-infected 
zones in the image using ENVI 5.3. The unsupervised method uses the minimum spectral distance to group each 
pixel into a class based on the spectral bands use in the classification. The process began with arbitrary class means 
from the image statistics based on the classes specified. It repeatedly performed a classification and recalculated 
new class statistics, which were then used for the next iteration (Song et al. 2017). 5-10 spectral classes were 
specified with 100 iterations, after which the classes were group into twister infected and non-infected by visual 
interpretation method using the identified field observation. Overall accuracy of classification results generated 
from vegetation indices was calculated based on confusion matrix using ground truth points collected from field 
work to identify the most suitable index based on highest overall accuracy.  
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3. RESULTS AND DISCUSSION 

3.1 Regression analysis with optimal spectral indices 

Regression analysis was performed to assess the ability of vegetation indices in estimating the disease index. Figure 
2 shows the results of correlation analysis between each of the 8 spectral indices and disease index. The coefficient 
of determination (R2) shows that NDVI (Figure 2A) and GNDVI (Figure 2B) with R2 of 93.43 and 90.69 has the 
strongest relationship to the disease severity, this indicates that these two indices has a high sensitivity to twister 
disease, while, the weakest relationship to the disease severity was observed on TSAVI (Figure 2E) and MTCI 
(Figure 2C) with R2 of 0.16 and 0.33 respectively. It was observed that indices with high R2 such as NDVI, GNDI 
and PSSRa shows data scattering at lower levels of severity which might affect the classification accuracy of the 
disease. Ashourloo et al. 2014 stated that the increase in data scattering can cause a decrease in the accuracy of 
disease severity estimation. Majority of the indices used in this study shows a negative correlation to disease 
severity index except for TSAVI. This indicates that as the severity of twister increases the vegetation indices 
values decreases. The result of this study was similar to Ashourloo et al. 2014 where there is a negative relationship 
between wheat leaf rust and spectral disease indices.            

                

 

 

 

 

                                                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Relationship between spectral indices and disease index of twister (A to H). 
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3.2 Image Classification and Accuracy 

Table 3 shows the overall accuracy of the vegetation indices used in the study. Result shows that GNDVI and 
PSSRa obtained the highest overall accuracy with 83.33 and 80.95% respectively. While the lowest overall 
accuracy was recorded in SAVI with 50%. Three (3) out of 6 indices gave better discrimination of healthy and 
twister infected onion, this indicates that GNDVI, PSSRa and NDVI can be used for detection of twister since they 
obtained high accuracies. The classification map of healthy and twister infected onion obtained from GNDVI is 
shown in Figure 3. Healthy onion is presented in green while twister infected onion is presented in yellow. Other 
features such as soil and trees were masked out from the image and presented in black. The GNDVI was based on 
the wavelength of Near-infrared (835.1 nm) and Green (560 nm) while PSSRa and NDVI were both based on Near-
infrared and Red which relates to plant stress detection. Green Normalized Difference Vegetation Index (GNDVI) 
is a variation of NDVI which used green reflectance instead of red, and it was argued to be at least five times more 
sensitive to chlorophyll-a concentration than the NDVI and specifically useful for differentiation in stressed and 
senescent vegetation (Frampton et al. 2013). This findings support the result of this study since twister disease 
causes twisting and elongated neck and discoloration of leaves (Alberto et al. 2018). Another characteristic 
symptom of twister is chlorosis which is characterized by yellowing of leaf tissue due to a lack of chlorophyll. This 
indicates that GNDVI is sensitive to chlorophyll concentration since it is effective in discriminating healthy and 
twister infected onion. Results of the study also concurs with the study of Kumbula et al. 2019 where they separated 
the healthy and unhealthy (stressed) vegetation which were observed in the green peak and vegetation red edge 
region, hence, vegetation indices such as PVR and GNDVI showed an outstanding performance in detecting the 
probability of C. tristis occurrence. PSSRa and NDVI that produce high classification accuracies were also reported 
to be one of the best performing VIs in terms of correlation coefficient with respect to canopy chlorophyll content 
(Frampton et al. 2013). 

 

 

Table 3. Accuracy assessment of vegetation indices based on confusion matrix 
Vegetation Indices Overall Accuracy 
Green Normalized Difference Vegetation Index (GNDVI) 83.33% 
Pigment specific simple ratio for chlorophyll a (PSSRa) 80.95% 
Normalized Difference Vegetation Index (NDVI) 78.57% 
Normalized Difference Index 4 and 5 (NDI45) 52.38% 
Modified Chlorophyll Absorption in Reflectance Index (MCARI) 52.38% 
Soil Adjusted Vegetation Index (SAVI) 50.00% 
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Figure 3. Classification map of healthy and twister infected onion field detected using GNDVI index from 
Sentinel 2 imagery 

 

4. CONCLUSION 

Vegetation indices generated from Sentinel 2 imagery were evaluated in their capability to detect and map the 
twister disease of onion in the field. Classification accuracy of individual VIs derived from ISODATA 
classification has been investigated. The results of the study indicate that vegetation indices derived from Sentinel 2 
imagery could be used for twister classification which shows satisfactory results. Regression analysis was also 
performed in each individual VIs to assess the ability of vegetation indices in estimating the disease index. It was 
found out that NDVI and GNDVI has the highest coefficient of determination (R2) indicating a strong relationship 
with the disease severity. It was also found out that the majority of the indices used in this study shows a negative 
correlation to disease severity index except for TSAVI. Results of the classification showed that GNDVI PSSRa 
and NDVI obtained the highest overall accuracy. This indicates that this 3 VIs can be used for detection of twister 
since it gives better discrimination and high accuracies. Hence VI’s generated from Sentinel 2 imagery has a 
potential use in detection, monitoring and management of twister disease of onion. 
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