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ABSTRACT: Recently, a convolutional neural network (CNN) has been regarded as an effective deep learning 
model that can extract spatial contextual information without user’s intervention for classification. However, to 
extract useful spatial features may be difficult from the CNN model when limited training data are used for 
supervised learning. In this case, if the simple application of softmax activation functions, the final classification 
may not lead to satisfactory classification performance due to less informative spatial features. As an alternative, 
conventional machine learning algorithms can improve the classification performance because more sophisticated 
algorithms than the softmax operator are applied to the final classification. In this paper, a hybrid model is 
presented that combines two dimensional CNN (2D-CNN) and random forest (RF). Spatial contextual information 
extracted from 2D-CNN is used as input features of RF-based classification. To evaluate the potential of the hybrid 
model for crop classification, a case study of crop classification with unmanned aerial vehicle images was carried 
out. The classification performance of the hybrid model proposed in this study was superior to those of 2D-CNN 
and RF classifiers, implying the effectiveness of the proposed model when small training data are used for 
supervised classification.  

1. INTRODUCTION

Crop maps, which have been routinely crop yield prediction and crop growth monitoring, are produced using 

remote sensing data. Recently, the importance of food security has been emphasized in relation to the rise of 

international grain price due to environmental and climate changes. Therefore, the producing a reliable crop maps 

are one of the most important issues in agriculture. 

The selection of an appropriate classification methodology for producing reliable crop maps is very important. 

Machine learning (ML) models including support vector machine (SVM) and random forest (RF) have been widely 

applied for crop classification. When the conventional ML models are applied to supervised classification, 

appropriate feature extraction and selection should be performed in advance (Löw et al., 2013; Kwak and Park, 

2019). However, extraction of optimal features may be time-consuming and much effort should be made prior to 

classification (Sidike et al., 2019).  

In recent years, deep learning (DL) algorithms have been widely applied to video recognition and signal processing, 

as well as classification in remote sensing (Rußwurm and Körner, 2018; Wei et al., 2019). A convolutional neural 

network (CNN), which is one of DL algorithms, can consider spatial contextual information between neighboring 

pixels and be effectively applied to the classification of areas with similar spatial characteristics such as crop fields 

(Zhong et al., 2019). The CNN model is capable of automatically extracting high-level spatial features without 

user’s intervention (Sidike et al., 2019; Zhu et al., 2017). Despite this advantage, the CNN model still has some 

limitations. It is often difficult to estimate the optimal model parameters for the extraction of high-level spatial 

features when small training data are used (Hu et al., 2015). Kim et al. (2018) compared the classification accuracy 

of SVM with that of two dimensional CNN (2D-CNN) when different numbers of training data and hyper-

parameters were applied. The classification performance of 2D-CNN decreases significantly as the number of 

training data was smaller. Another problem is that a simple classifier such as softmax activation functions is applied 

to fully connected layers like conventional neural networks. When optimal features that are useful to distinguish 

classes could not be extracted from the CNN model with limited training data, satisfactory classification 

The 40th Asian Conference on Remote Sensing (ACRS 2019) 
October 14-18, 2019 / Daejeon Convention Center(DCC), Daejeon, Korea ThP-94

1



performance may not be obtained by the softmax activation functions (Zhou et al., 2017). 

To overcome these drawbacks, some researches have been conducted to combine CNN with conventional ML 

algorithms (Li et al., 2019). The conventional CNN architecture is first designed to automatically extract the high-

level features. Then, the conventional ML classifier that is more sophisticated than the softmax activation functions 

is applied to classify the features extracted from CNN. Despite the great potential of this hybrid model, crop 

classification is still challenging because similar spatial and spectral characteristics between crops make it difficult 

to extract sufficient features from DL algorithms.  

In this study, we investigate the potential of the hybrid model that combines 2D-CNN and RF for crop 

classification. The 2D-CNN model is employed as a high-level spatial feature extractor. RF, which is relatively 

insensitive to hyper-parameters compared to another ML algorithm such as SVM, is applied to a classifier. The 

applicability of this hybrid model for crop classification is illustrated via a case study of crop classification with 

unmanned aerial vehicle (UAV) imagery acquired in Anbandegi, a major highland Kimchi cabbage cultivation area 

in Korea. 

 

2. STUDY AREAS AND MATERIALS 
 

Anbandegi, one of three major highland Kimchi cabbage cultivation areas in Korea, was selected as a case study 

area (Figure 1(a)). Major crops in the study area include highland Kimchi cabbage, cabbage, and potato, and there 

are some fallow areas. For crop mapping, the UAV imagery acquired on July 27, 2017 was selected because 

highland Kimchi cabbage shows the highest plant vitality in the late July. Three visible bands from the UAV 

imagery from a fixed wing drone equipped with a Cannon IXUS/ELPH camera were used as inputs for classification.  

Crop parcels in ground truth data based on field surveys (Figure 1(b)) were divided into two independent parcel 

groups, one for training parcels and the other for reference parcels. To test the classification performance with 

respect to the change of the number of training data, training data were randomly extracted from the training parcels. 

Five different proportions with respect to reference data (0.1 %, 0.5 %, 1 %, 3 %, and 5 %) were tested.   

 

Figure 1. (a) The unmanned aerial vehicle imagery acquired in the study area and (b) ground truth data 

 
3. METHODOLOGY 
 
As a representative DL model, the 2D-CNN model first extracts spatial features and then performs classification 

using extracted features. It uses spectral information composed of patches as input data to extract spatial features. 

Suppose that the input data of 2D-CNN consist of � × � × � dimensions (� × � and � denote input patch size 

and spectral depth, respectively). In this study, K and D were set to 11 and 3, respectively through a preliminary 
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test. First, the 2D-CNN uses convolution layers to extract useful features of neighboring pixels within input patches. 

The convolution layers extract a lot of features, which are called feature maps or activation maps, through 

predefined kernels and activation functions. In this study, the kernel size was set to 3 by 3 and rectified linear unit 

(ReLU) was used as an activation function. Max-pooling is also applied to artificially reduce the spatial dimension 

of feature maps. A series of these operations are applied to extract useful spatial features. To perform classification, 

feature maps should be first converted to one dimensional form through flattening, and softmax activation functions 

are then applied to the flattened fully connected layers. Additional features can be extracted from the fully connected 

layers through activation functions prior to applying softmax activation functions. The optimal 2D-CNN model 

architecture was constructed through several preliminary tests and the details of the architecture are given in Table 

1.    

 
Table 1. 2D-CNN model structure used in this study 

Layer (activation function) Output dimension # of parameters 

Input layer (11, 11, 3) 0 
2D Convolution_1 (ReLU) (11, 11, 32) 896 
2D Convolution_2 (ReLU) (11, 11, 32) 9,248 

Max pooling_1 (5, 5, 32) 0 
2D Convolution_3 (ReLU) (5, 5, 64) 18,496 

Flatten_1 (1600) 0 
Dropout_1 (1600) 0 

Dense_1 (ReLU) (64) 12,808 
Dense_2 (softmax) (4) 36 

Total trainable parameters: 41,484 

 

If the number of training data is small, the 2D-CNN model may be overfitted to the small training data and the 

classification performance may be unsatisfactory. RF is generally known to mitigate overfitting and is not 

significantly affected by outliers (Li et al., 2013). By considering this advantage, RF was selected as a classifier of 

the final layer (referred to as Dense_2 in Table 1) to improve the classification performance of the conventional 

2D-CNN model. To evaluate the classification performance of the proposed hybrid model, we compared overall 

accuracy statistics of RF, 2D-CNN, and the proposed hybrid model.   

 

4. RESULTS AND DISCUSSION 
 
Figure 2 presents the variation of overall accuracy of classification results with respect to different numbers of 

training data. Regardless of the number of training data, the proposed hybrid model showed the best classification 

accuracy. The overall accuracy of pixel-based RF was about 60 % regardless of the variation in the number of 

training data. As the number of training data increased, the classification accuracy values of 2D-CNN and the 

proposed hybrid model also increased. The highest overall accuracy was about 80 %. When relatively large numbers 

of training data were used (e.g., 1 %, 3 %, and 5 %), the difference in overall accuracy between pixel-based and 

patch-based classification was about 20 %p. When spatial features were extracted from large training data in 2D-

CNN (e.g., 5 %), the difference in classification accuracy between conventional 2D-CNN and the hybrid model 

was not great. In contrast, when fewer training data were used for classification, the overall accuracy of the two 

patch-based classification models was significantly different. In particular, the difference in overall accuracy 

between conventional 2D-CNN and the hybrid model was about 10 %p when 0.1% training data were used. The 

overall accuracy of 2D-CNN was about 10 %p lower than that of the RF model. Based on these results, it could be 

concluded that enough training data should be used to extract useful spatial features from the 2D-CNN model. The 

hybrid model presented in this study could effectively classify less informative spatial features.  

3



Figure 2. Variation of overall accuracy of three models with respect to the variation of the number of training data. 

 
The classification results are shown in Figure 3. Many isolated pixels were observed in the RF classification result, 

which is common in pixel-based classification results, regardless of variation in the number of training data. In 

addition, highland Kimchi cabbage was misclassified as potato or cabbage. In the 2D-CNN classification result, 

isolated pixels were greatly reduced, compared to the RF classifier, but misclassified pixels tend to be spatially 

clustered. On the other hand, the proposed hybrid model partially mitigated misclassification patterns that appeared 

when the number of training data was small.  

 

 Figure 3. Classification results in sub-areas with significant differences between the three models: the number of 

training data at (a) 0.1% (the fewest training data) and (b) 0.3% (the highest classification accuracy). 
 
 

5. CONCLUSIONS 
 

In this study, we proposed the hybrid model that combines 2D-CNN and RF as a feature extractor and a final 

classifier, respectively, to mitigate overfitting problems that commonly occur in 2D-CNN when small training data 

are used. From the case study of crop classification in the highland Kimchi cabbage cultivation area, it was found 

that the proposed hybrid model outperformed conventional 2D-CNN and RF. Particularly, the improvement in 

classification accuracy of the hybrid model was significant when small training data were used for classification. 

Extensive experiments in other areas where different crops are cultivated will be carried out to strengthen the 

potential of the proposed hybrid model.  
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