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ABSTRACT: In this study, we focus on intelligent construction vehicles to improve the safety of 
workers. Generally, global navigation satellite system positioning is utilized to obtain the position 
data of workers and construction vehicles in construction sites. However, construction fields in 
urban areas have poor satellite positioning environments. Therefore, we have developed a 3D 
sensing unit mounted on a construction vehicle for worker position data acquisition. The unit 
mainly consists of multilayered LiDAR. Moreover, we propose a real-time object classification 
and tracking methodology from temporal point clouds acquired with the multilayered LiDAR. We 
evaluated our methodology using temporal point clouds acquired from a construction vehicle in 
drilling works. 

1. INTRODUCTION

Recently, the construction field has focused on technical and political issues, such as construction 
site management costs, productivity improvement, and reducing the number of accidents (Dong et 
al. 2018). Various actions are available to address these issues based on building information 
modeling (BIM). BIM uses terrestrial LiDAR, global navigation satellite system (GNSS) devices, 
unmanned aerial vehicles (UAVs), and intelligent construction vehicles (Doishita et al. 2010) for 
spatial data acquisition. Here, we focus on using intelligent construction vehicles to improve the 
safety of workers. Generally, GNSS positioning is applied to obtain the position data of workers 
and construction vehicles in construction sites. However, when position data are shared among 
construction vehicles and workers, instead of using GNSS devices, wireless communication 
systems and computing systems should be distributed to share position data between workers and 
construction vehicles. Thus, the sensing cost increases higher and the sensing system becomes 
more complex. Moreover, construction fields in urban areas have poor satellite positioning 
environments. Thus, we applied 3D sensing to provide more stable worker position data 
acquisition and sensing-avoid application of construction vehicles and incident prediction. UAVs 
and terrestrial LiDAR can acquire 3D data of static construction fields (Figure 1). However, with 
UAVs and terrestrial LiDAR, it is difficult to measure and represent changing objects and 
environments, such as moving workers, vehicles, and construction fields in real time. 

Figure 1. 3D measurement result using a TOF camera in a construction site 
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Therefore, we have developed a 3D sensing unit mounted on a construction vehicle for real-time 
worker position data acquisition. Our proposed unit mainly comprises multilayered LiDAR and 
iBeacon devices. Moreover, we propose a real-time object classification and tracking 
methodology from temporal point clouds acquired with a multilayered LiDAR and beacon devices. 
We evaluated our methodology using temporal point clouds and iBeacon data acquired from a 
construction vehicle in drilling works. 
 
2. METHODOLOGY 
 
Worker position data can be estimated directly from LiDAR data. However, object identification 
is impossible because LiDAR data have low spatial resolution and no color information. In 
contrast, although the accuracy of position estimation is unstable, beacon receivers can identify 
objects using a unique identifier sent from beacon transmitters. Therefore, we integrate LiDAR 
data and beacon data to identify objects. 
Our proposed methodology is shown in Figure 2. First, temporal point clouds are acquired with 
multilayered LiDAR. At the same time, temporal distance data are acquired with beacon ranging 
devices. We focus on the use of LiDAR for autonomous vehicles and iBeacon for indoor 
positioning to improve the cost of 3D sensor units. Then, we distribute iBeacon transmitters to 
workers and mount LiDAR and iBeacon receivers on a construction vehicle to reduce the number 
of computing systems in a construction site. Second, simultaneous localization and mapping 
(SLAM) (Durrant-Whyte and Bailey 2006; Durrant-Whyte and Bailey 2006) and moving object 
extraction are applied to acquire point clouds in parallel. Moving object extraction results are used 
for directly sensing avoidance applications. Third, extracted objects are traced in moving object 
tracking. Lastly, moving objects are identified using temporal LiDAR and iBeacon data for 
incident evaluation and estimation in a construction site. When two or more PCs are used for 
sensing, we manage our measurement system with a GNSS clock to synchronize all sensors. 
When we use a PC, all sensors can be synchronized with the PC clock. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Proposed methodology 
 
2.1 Moving object extraction 

 
Moving object extraction consists of four steps (Figure 3). First, temporal point clouds are 
projected into temporal range images. The temporal range image is prepared as 7D spaces 
consisting of 3D coordinate values (X, Y, and, Z), intensity values, scanning directions (horizontal 
angles), scanning layers (vertical angles), and scene numbers. Second, point clouds higher than 
ground height are labeled in the range images. The ground height is determined using a major 
horizontal plane estimated with robust plane fitting. Third, labeled point clouds are clustered to 
generate moving object candidates with voxel segmentation processing, and we apply the region-
growing methodology for the voxel segmentation. Fourth, moving objects, such as workers and 
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construction vehicle buckets, are extracted from moving object candidates. The closest moving 
object candidate from a scanner is assumed to be a bucket, while the other moving object 
candidates are assumed to be workers with geometric constraints such as height and volume. 
 
 
 
 
 
 
 
 
 
 

Figure 3. Moving object extraction 
 
2.2 Moving object tracking 

 
Candidates of moving objects, such as buckets and workers, are tracked to be constantly fixed as 
buckets and workers during several scenes in a temporal 3D space. When a scanner position is 
fixed, the nearest cluster tracking can be applied for simple object tracking. However, when the 
scanner translates and rotates, tracking results using acquired point clouds would be unstable 
(Figure 4). Thus, SLAM is integrated to detect and track moving objects (Vu et al. 2011) to 
improve the stability of moving object tracking from a moving scanner. In our methodology, 
rotation and translation parameters are estimated with SLAM. Then, the nearest clusters are 
searched from rotated and translated point clouds. At the same time, spike noises and unclear 
points can be rejected from moving object candidates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Moving object tracking and filtering 
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2.3 iBeacon ranging 
In wireless communication-based indoor positioning systems, popular positioning algorithms 
include time of arrival (ToA), time difference of arrival (TDoA), angle of arrival (AoA), and 
received signal-strength indication (RSSI) positioning (Golden and Bateman 2007). In an actual 
environment, ToA, TDoA, and AoA positioning are strongly affected by precise synchronization 
between transmitters. In contrast, RSSI positioning (Vaidya et al. 2014) is more robust than the 
other methods. While three or more fixed transmitters are required for triangulation-based 
positioning, cheap transmitters, such as iBeacon, have recently been used for RSSI positioning 
because RSSI can provide position data without precise synchronization between transmitters. 
However, in our study, a moving receiver receives signals from moving transmitters. Thus, we 
only focus on only beacon ranging and omit the positioning calculation using iBeacon. 
An iBeacon receiver can receive signals from many transmitters without interference because of 
spectrum spreading signal processing. iBeacon transmitters send data consisting of unique 
identifiers such as universally unique identifier (UUID), distance labels, and received signal-
strength (RSS) values. Although an approximate distance from a transmitter can be determined 
from the distance labels, such as near (< 1 m from a transmitter), far (> 1 m), and unknown (the 
precise distance from transmitter to receiver can be estimated using RSS values from a 
transmitter). The distance can be calculated using the following equation based on the Friis 
transmission formula: 
 
D = 10((TxPower – RSS) / 20) , 
where D is the estimated distance value from an iBeacon transmitter to the receiver and TxPower is 
the RSS value 1 m from an iBeacon transmitter. 
 
2.4 Moving object identification 
Each UUID of iBeacon data is linked to tracking results estimated from LiDAR data using 
iBeacon ranging data in the moving object recognition step. Generally, the estimated distance 
accuracy of iBeacon data is lower than that of LiDAR data. However, the trends of temporal 
distance data are approximately the same. Thus, moving objects are identified based on pattern 
matching using tracking results and temporal distance data of iBeacon (Figure 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Moving object identification 
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3. EXPERIMENTS 
 
We prepared simulated construction environments in an urban area (Figure 6). Point clouds and 
iBeacon data were acquired from the backhoe under general construction operation with 
translation and rotation of construction vehicles during construction work. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Simulated construction environment 
 
A multilayered LiDAR (VLP-16, Velodyne) was mounted on a backhoe (Figure 7). A laptop 
computer (MacBook Air, Apple) was used to acquire point clouds with LiDAR. We acquired 
point clouds during construction work, such as excavation, piping, and filling works, for 30 
minutes (approximately 18,000 scenes). Altogether, we used 134,955,204 points (9,523 scenes) in 
all acquired point clouds for our data processing. We distributed iBeacon transmitters (MyBeacon 
MB004 Ac, Aplix) to four workers and had each worker carry two iBeacon receivers in their front 
pockets. TxPower was adjusted as –63 dBm. We also used the laptop computer with the bleacon 
Node.js library as an iBeacon receiver. The laptop computer received signals from all iBeacon 
transmitters within approximately 1 Hz (approximately 1,800 epochs). All LiDAR and iBeacon 
data were synchronized with the PC clock. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Multilayered LiDAR and beacon receiver mounted on a construction vehicle 
 

Multi-layered LiDAR

Distance measurement accuracy : 3 cm
Horizontal FOV : 360 degrees (resolution : 0.25 degrees)
Vertical FOV : 30 degrees (resolution : 2.00 degrees)
Sampling rate : 10 Hz

VLP-16, Velodyne

Beacon receiver
Receiver: Macbook air (Apple)
Transmitter: MyBeacon MB004 Ac (Aplix)
Sampling rate: 1 Hz

5



 
4. RESULTS 
 
Acquired temporal point clouds are shown in Figure 8. The upper image shows a scene of 
acquired point clouds and the extracted moving objects. The bottom image shows a range image 
and extracted moving objects. The vertical axis indicates scanning layers extended 8.0 times with 
linear interpolation, and the horizontal axis indicates horizontal scanning angles with 0.25 
resolution. Figure 9 shows a part of the results after segmentation and clustering. 
 
 
 
 
 
 
 
 
 

Figure 8. Acquired point clouds and extracted moving objects 
 
 
 
 
 
 
 
 
 
 

Figure 9. Results after segmentation and clustering of point clouds 
 
Figure 10 shows the estimated distances from the iBeacon transmitters to the receiver. The 
vertical axis indicates estimated distance values, while the horizontal axis indicates the signal 
received time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Estimated distances from the iBeacon transmitters to the receiver 
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Object tracking and recognition results are shown in Figure 11, and indicates that our 
methodology can stably trace workers. The processing time is shown in Table 1. Our processing 
environment was Intel Core i7-6567U (3.30 GHz). We confirmed that object extraction was 
processed with a frequency of approximately 10 Hz and overall processing with a frequency of 
approximately 5 Hz. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Worker tracking and identified results. Upper image: results of object extraction on 
point clouds; Bottom image: results of identified tracking 

 
Table 1. Processing time 
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Processing time [sec] 1023.690 759.050 13.130 1795.870

Processing time (average) [sec] 0.107 0.080 0.001 0.187
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5. CONCLUSION 
 
In this study, we developed a real-time 3D sensing unit mounted on a construction vehicle for 
worker position data acquisition. In addition, we proposed a real-time object classification and 
tracking methodology from temporal point clouds acquired with multilayered LiDAR and 
iBeacon data. We conducted an experiment to evaluate our methodology using temporal point 
clouds and iBeacon data acquired from a construction vehicle in drilling works. We confirmed 
that our methodology can extract and track static and kinematic objects with multilayered LiDAR 
and beacon devices with real-time processing. 
 
REFERENCES 
 
Dong, S., Li, H,. Yin, Q., 2018. Building Information Modeling in Combination with Real Time 
Location Systems and Sensors for Safety Performance Enhancement, Safety Science, Volume 102, 
pp. 226-237. 
 
Doishita, K., Muramoto, E., Kouda, T., 2010. Application of ICT to construction machinery, 
Komatsu Technical Report, Vol. 56, No.163. 
 
Durrant-Whyte, H., Bailey, T., 2006. Simultaneous localization and mapping (SLAM): part I, 
Robotics & Automation Magazine, IEEE, Vol. 13, Issue: 2, pp. 99-110. 
 
Bailey, T., Durrant-Whyte, H., 2006. Simultaneous localization and mapping (SLAM): part II, 
Robotics & Automation Magazine, IEEE, Vol. 13, Issue: 3, pp. 108-117. 
 
Vu, T., Burlet, J., Aycard, J., 2011. Grid-based Localization and Local Mapping with Moving 
Object Detection and Tracking, Information Fusion, Volume 12, Issue 1, pp.58-69. 
 
Golden, S. A., Bateman, S. S., 2007. Sensor Measurements for Wi-Fi Location with Emphasis on 
Time-of-Arrival Ranging, IEEE Transactions on Mobile Computing archive, Volume 6 Issue 10, 
pp.1185-1198. 
 
Vaidya, A., Meshram, A., Sakhare, A., 2014. Position location methodology based on RSSI using 
RFID, International Journal of Application or Innovation in Engineering & Management 
(IJAIEM), Volume 3, Issue 1, pp.370-375. 
 
 

8




