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Abstract: Hyperspectral imagery is widely used in image classification due to their continuity and the abundance of 

spectral information. Recently, manifold deep learning algorithms were proposed for hyperspectral image 

classification (HSIC) demonstrating a competitive edge in performance over existing methods due to their ability to 

automatically extract high-level features. However, one significant drawback of hyperspectral images is their high 

dimensionality, which increases the learning time and processing complexity. To address this problem, several studies 

have exploited principal component analysis (PCA) as a pre-processing step in the deep learning framework to 

compress the entire image through a simple statistical processing of the spectral dimension while preserving the 

spatial information. However, since PCA can result in a loss in the spectral information, other studies have applied 

the original hyperspectral imagery as input to deep learning networks. At the same time, the impact of dimensionality 

reduction using PCA in deep learning networks on achieving efficient HSIC is understudied. Hence, the purpose of 

this study is to analyze the effect of PCA in deep learning for HSIC. In this paper, we verified the efficiency of deep 

learning networks through various conditions of PCA. We employed a convolutional neural network (CNN), which 

can extract spatial-spectral features of hyperspectral imagery. To analyze the sensitivity of PCA depending on CNN 

architectures, a two-dimensional CNN (2D-CNN) and a three-dimensional CNN (3D-CNN) were applied. We 

quantitatively analyzed the experimental results, which revealed that PCA can effectively reduce an image to its 

optimal spectral dimension according to CNN models for efficient CNN-based HSIC. 

1. Introduction

Advances in sensors and photonics have brought the applicability of hyperspectral imagery with hundreds of 

narrow spectral bands. Broadband can only discriminate general differences between materials, whereas 

hyperspectral sensors allow acquiring sufficient spectral information for detailed identification with a high spectral 

resolution (Lillesand, 2015). Due to the continuity and abundance of this spectral information, hyperspectral image 

classification (HSIC) has been widely developed. Hyperspectral imagery has been shown to help achieve an accurate 

and robust classification performance, and various image classification methods have been developed. Conventional 

classification methods such as k-nearest neighbors (Samaniego, 2008), minimum distance, and logistic regression 

(Cheng, 2006) also use the abundant spectral information from hyperspectral imagery. Among other algorithms, 

support vector machine (SVM) has demonstrated a stable performance in HSIC. Fauvel (2008) analyzed the spatial-

spectral information of hyperspectral imagery using SVM and morphological profiles, and were able to achieve 

excellent classification performance. The spatial-spectral properties were also analyzed through the fusion of pixel-

wise SVM and a segmentation map obtained using partial clustering (Tarabalka, 2009). 

Lately, deep learning has achieved promising performance in various areas including HSIC. For example, Chen 

(2014) exploited an autoencoder, one of the deep learning algorithms. Convolutional neural network(CNN) is another 

representative deep learning algorithm widely used for image classification, and also has been applied to HSIC in 

many studies. High level spatial-spectral features can be obtained using the CNN, allowing it to achieve high and 

stable classification accuracy. The spectral response function of each pixel was exploited to learn CNN model using 

the abundant spectral information of hyperspectral imagery (Slavkovikj, 2015; Hu, 2015). A joint spatial-spectral 

classification framework was constructed using a patch, splitting one pixel and neighbor pixels in a CNN (Makantasis 

2015; Chen, 2016; Zhang, 2017). In addition, 3D-CNNs for HSIC have been studied, considering that they can 

comprehend 3D data cube with achieving a good performance (Li, 2017, He, 2017 and Li, 2017). 

At the same time, the high spectral dimensionality of hyperspectral images causes some problems. High-

dimensional data not only complicates analysis, but also make the learning process difficult due to a limited number 

of labelled samples. To solve this problem, many studies have conducted spectral dimensionality reduction methods. 

Principal component analysis(PCA) is a representative method that analyzes data based on several principal 

components through statistical analysis, and is often used for dimensionality reduction. The applicability of PCA to 

hyperspectral imagery has been studied in several papers. For example, Rodarmel (2002) established the applicability 

of PCA to HSIC, while most existing studies analyzed the impact of PCA in multispectral imagery. They concluded 

that up to the first 10 PCA bands are significant bands for achieving a similar classification performance to that when 

using original hyperspectral data. Statistical inference of estimated eigenvectors and eigenvalues was studied for the 
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dimensionality reduction of hyperspectral imagery through PCA (Bajorski, 2011). Agarwal (2007) proposed 

hierarchical PCA for an efficient dimensionality reduction of hyperspectral imagery. 

Many CNN-based HSIC studies have also applied PCA. Several studies suggested that the size and dimension of 

hyperspectral imagery requires compression to allow a deep learning network to learn the enormous number of 

variables effectively (Makantasis, 2015, Zhao, 2016, Chen, 2016, Liang, 2016, Zhang, 2017 and Mei, 2019). 

Nevertheless, the effects of PCA for deep learning based HSIC still remain understudied. The existing CNN based 

HSIC studies using PCA have not focused on the impact of PCA and PC bands. Even, another studies have proposed 

CNN models that show good classification performance depending on suitable design of network, while not using 

PCA. 

The purpose of this study is to analyze the effect of PCA in CNN based HSIC. In this paper, we verified the 

efficiency of the network through various conditions of PCA. In more detail, the main contributions of this study are 

as follows: 1) We focus on analyzing the impact of PCA rather than proposing an outperforming classification model. 

As discussed above, the impact of PCA in CNN is understudied, and this paper may contribute to the applicability of 

PCA. 2) We use two hyperspectral datasets with different spectral dimensions to explain that PCA can control the 

problem of dimensionality. 3) Two different models, namely, 2D-CNN and 3D-CNN, are exploited to validate the 

sensitivity of PCA according to CNN architectures. The remainder of this paper is organized as follows: the 

methodology of this study is explained in Section 2 including the description of PCA and CNN model architectures. 

The experimental results and their discussion are introduced in Section 3. Finally, Section 4 provides the conclusion 

of this study. 

 

2. Methodology 

 

2.1. PCA 

PCA is a method that can be used to convert an original imagery into a small and independent set of variables, 

and effectively reducing the dimensionality of hyperspectral imagery (Jensen, 1987). Applicability of PCA to 

hyperspectral data results from mathematical properties based on eigenvalue decomposition of data covariance matrix 

(𝛴). The transformation from a raw image to PC bands is based on eigenvalue decomposition as follows: 

 𝛴 = 𝐴𝛬𝐴𝑇 (1) 

where 𝐴 = (𝑎1, 𝑎2, ⋯ , 𝑎𝑁) is the eigenvectors matrix, and 𝛬 is the diagonal matrix composed of the eigenvalues. 

The first K eigenvectors of A can be used to calculate a transformed pixel vector 𝑧𝑖 from an original image pixel 

vector 𝑥𝑖 via the following equation: 

 𝑧𝑖 = [𝑧1 𝑧2  ⋮  𝑧𝐾 ] = [𝑎11  ⋯ 𝑎1𝑁  ⋮ ⋱ ⋮  𝑎𝐾1  ⋯ 𝑎𝐾𝑁  ][𝑥1  ⋮  𝑥𝑁 ] (2) 

The most notable point in this equation is that the transformed PC bands are independent of each other by the property 

of eigenvectors. Since hyperspectral imagery has continuous spectral response functions, neighboring bands may 

have the redundancy problem. PCA can remove this correlation through the dependency of the PC bands. Variance 

explained by the first few PC bands is calculated as: 

 
∑𝐾

𝑖=1 𝜆𝑖

𝜆1 + 𝜆2 + ⋯ + 𝜆𝑁

 (3) 

Since the first PC band can explain the highest variance of information, and the explained variance decreases, the 

appropriate number of PC bands should be determined for an efficient dimensionality reduction of hyperspectral 

imagery. In this study, we transformed hyperspectral data by increasing the number of PC bands to analyze the impact 

of PCA for CNN based HSIC. 

 

2.2. 2D-CNN 

The CNN is a deep learning algorithm widely-used for processing data with a known grid-like topology 

(Goodfellow, 2016). In the context of image classification, the CNN can consider spatial and spectral properties by 

exploiting a convolution filter. CNN image classification models are often constructed based on patches, including 

target pixels with their neighbor pixels. 

Table 1 shows the 2D-CNN models used in this study. To compare the variability of classification performance 

according to the number of PC bands, the same CNN model is applied to all datasets pre-processed using PCA. In 

addition, the classification results of the PCA-CNN are compared with the results of the original hyperspectral 

imagery. A deeper and more complex model is exploited in the Original-CNN, since the original hyperspectral 

imagery has very high spectral dimensionality. The model consists of three convolutional layers and two fully 

connected layers. The size of the convolution filter is fixed to 3 × 3, and the number of filters is set to an appropriate 

value through repeated experiments. Each convolutional layer is followed by batch normalization (BN) for 

regularization. Dropout is used in the fully-connected layers to control overfitting, and the last layer has the same 

number of nodes as the number of its class. 
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Table 1 2D-CNN model architecture 

PCA-CNN Original-CNN 

Conv2D (3,3)  filter#:20  

Zero Padding     BN 
Conv2D (3,3)  filter#:75   

Zero Padding       BN 

Conv2D (3,3)  filter#:60   BN Conv2D (3,3)  filter#:150    BN 

Conv2D (3,3)  filter#:180  BN Conv2D (3,3)  filter#:225    BN 

Fully Connected Nodes #: 180   Dropout (0.5) Fully Connected Nodes #: 180   Dropout (0.5) 

Fully Connected Nodes #: the number of classes Fully Connected Nodes #: the number of classes 
 

2.2. 3D-CNN 

The 3D-CNN can learn a deeper feature cube through a 3D kernel and is mainly used for analyzing video or 

image change. In particular, that hyperspectral data is an image cube with high spectral dimensions can lead to the 

applicability of 3D-CNN for HSIC. Its 3D convolution filter can help interpret the enormous spectral information of 

hyperspectral imagery. Table 2 represents the model architectures of the 3D-CNN built in this study. Similar to the 

2D-CNN, the PCA-CNN uses the same model, while a different model is used in the original hyperspectral data. The 

size of the 3D convolution filter in this paper is 3 × 3 × 𝐾, where 𝐾 denotes the filter size of the spectral dimension, 

which should be set appropriately according to the model structure. For the Original-CNN, we construct a deeper 

architecture to optimize more spectral parameters. 

 

Table 2 3D-CNN model architecture 

PCA-3D-CNN Original-3D-CNN 

Conv3D (3,3,7)  filter#:5 

Zero Padding       BN 
Conv3D (3,3,9)  filter#:3 

Zero Padding      BN 

Conv3D (3,3,5)  filter#:15   BN MaxPooling Kernel: (1,1,2) 

Conv3D (3,3,3)  filter#:45   BN Conv3D (3,3,7)  filter#:6   BN 

Fully Connected Nodes #: 180   Dropout (0.5) MaxPooling Kernel: (1,1,2) 

Fully Connected Nodes #: the number of classes 
Conv3D (3,3,5)  filter#:9 

Zero Padding       BN 

  Conv3D (3,3,3)  filter#:12   BN 

  Fully Connected Nodes #: 270   Dropout(0.25) 

  Fully Connected Nodes #: 180   Dropout (0.25) 

  Fully Connected Nodes #: the number of classes 

 

3. Experimental results and discussion 

 

3.1. Data 

In this study, we use two popular hyperspectral datasets with different land cover conditions. The first dataset is 

the Indian pines (IP) hyperspectral imagery gathered by Airborne Visible Infrared Imaging Spectrometer (AVIRIS). 

The imagery consists of 145 × 145 pixels and 220 spectral bands ranging from 0.4 𝜇𝑚 𝑡𝑜 2.5 𝜇𝑚. Figure 1(a) and 

1(b) illustrate a true color image and ground-truth image from the IP dataset, respectively. The dataset includes 16 

classes mostly representing vegetation covers. The second dataset is the Pavia University (PU) hyperspectral imagery 

acquired by Reflective Optics System Imaging Spectrometer (ROSIS). The imagery consists of 610 × 340 pixels 

and 104 spectral bands ranging 𝑓𝑟𝑜𝑚 0.43 𝜇𝑚 𝑡𝑜 0.86 𝜇𝑚. Fig. 1(c) and 1(d) also show the true color image and 

ground-truth image from the PU dataset, respectively. The dataset includes 9 classes. 

 

  

  
(a) (b) (c) (d) 

Figure 1 Hyperspectral datasets used in this study: (a) true color image of IP, (b) ground-truth of IP, (c) true color  

image of PU, (d) ground-truth of PU 
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We split the IP and PU datasets into training and test samples, and the number of training samples are fixed at 

4000 to enable the quantitative comparison between the two sites. The training samples are further split into training 

and validation samples at a ratio of 4:1. The validation data are classified by the trained model for each epoch to 

check if the model is overfitted. 

 

3.2. Experimental design 

PCA is first applied to the two datasets to achieve dimensionality reduction. The compressed datasets are used to 

train the 2D-CNN and 3D-CNN models. The trained models are then used to classify the test samples. We increase 

the number of PC bands and compare the classification results. Considering the randomness of the learning process 

and sampling, the experiments are repeated ten times under the same conditions, and the average values of the results, 

except for the upper and lower 10% are used to compare the models. In addition, the results of classification using 

the original imagery are compared with the results of the PCA-CNN. 

 

3.3. Results 

Tables 3~6 list the overall results representing the test accuracy and average time of each experiment. All values 

are the trimmed averages of ten runs under the same conditions. To remove the variability of the epochs when 

considering the training time, we analyze the training time per epoch (s/epoch). 

 

 

Table 3 Classification results of the 2D-CNN in IP dataset 

PC 

bands 

Test 

Accuracy 

Training 

time 

PC 

bands 

Test 

Accuracy 

Training 

time 

PC 

bands 

Test 

Accuracy 

Training 

time 

1 59.272% 3.95541 8 88.622% 4.164303 40 92.974% 4.764624 

2 77.814% 3.859872 9 88.634% 4.325336 50 94.782% 5.086493 

3 83.96% 3.84 10 90.506% 4.25603 60 93.496% 5.126323 

4 85.402% 3.932787 15 92.74% 4.222758 70 93.97% 5.308274 

5 91.748% 3.891231 20 92.748% 4.461368 80 93.118% 5.128304 

6 88.782% 3.840269 25 94.226% 4.657486 90 93.34578% 5.324848 

7 88.404% 4.352944 30 92.864% 4.692681 Original 91.782% 15.83879 

 

Table 4 Classification results of the 2D-CNN in PU dataset 

PC 

bands 

Test 

Accuracy 

Training 

time 

PC 

bands 

Test 

Accuracy 

Training 

time 

PC 

bands 

Test 

Accuracy 

Training 

time 

1 72.942% 4.223332 8 94.953% 4.604753 40 97.093% 4.905299 

2 89.016% 4.110097 9 95.128% 4.036593 50 97.276% 5.335518 

3 89.945% 4.191614 10 96.914% 4.310066 60 97.062% 5.186912 

4 93.046% 4.331318 15 96.90% 4.434026 70 97.03% 5.536213 

5 94.073% 4.202385 20 97.018% 4.622949    

6 95.036% 4.396774 25 97.320% 4.913668    

7 94.269% 4.377177 30 97.050% 4.954998 Original 96.624% 12.74241 

 

Table 5 Classification results of the 3D-CNN in IP dataset 

PC 

bands 

Test 

Accuracy 

Training 

time 

PC 

bands 

Test 

Accuracy 

Training 

time 

PC 

bands 

Test 

Accuracy 

Training 

time 

7 89.5% 3.742201 20 95.82% 9.429098 60 98.648% 23.23326 

8 91.334% 5.07809 25 96.434% 11.84459 70 98.764% 26.06963 

9 91.742% 5.943251 30 96.846% 12.10583 80 98.956% 29.37223 

10 92.228% 6.184954 40 97.81% 16.16366 90 98.918% 32.14787 

15 95.106% 7.799459 50 98.442% 19.51984 Original 95.704% 54.29377 

 

Table 6 Classification results of the 3D-CNN in PU dataset 

PC 

bands 

Test 

Accuracy 

Training 

time 

PC 

bands 

Test 

Accuracy 

Training 

time 

PC 

bands 

Test 

Accuracy 

Training 

time 

7 96.484% 3.670954 20 98.883% 9.375724 60 98.900% 23.35722 

8 96.888% 5.097154 25 98.955% 10.82272 70 98.658% 26.39879 

9 97.000% 5.926387 30 98.956% 12.36203    

10 98.329% 6.034626 40 99.014% 15.56481    

15 98.854% 7.32512 50 98.921% 18.68645 Original 98.595% 27.6109 

 

 

 

4



2D-CNN and 3D-CNN 

Figure 2 visually shows the averages of the test accuracy and training time for the 2D-CNN of IP dataset (a) and 

PU dataset (b). For the two datasets, the test accuracy increases as the number of the first few PC bands increases, 

then converges to a specific value at a certain PC band. For the IP dataset, the results show a stable accuracy of more 

than 93% from 50 PC bands, which can explain the upper 99.7% variance of the original spectral information (Table 

7). Pre-processed dataset with the first ten PC bands in the PU dataset shows almost 97% test accuracy and no longer 

meaningfully increasing classification results. The first ten PC bands in the PU dataset can explain the upper 99.8% 

variance, which is similar to the IP dataset. 

 

Table 7 Explained variance ratio for each PC bands 

IP 

PC bands 1 2 3 4 5 6 7 8 9 10 

Variance 

ratio 
68.49 92.02 93.51 94.33 95.03 95.55 95.95 96.31 96.62 96.91 

PC bands 15 20 25 30 40 50 60 70 80 90 

Variance 

ratio 
98.01 98.65 99.00 99.24 99.54 99.72 99.83 99.90 99.94 99.97 

PU 

PC bands 1 2 3 4 5 6 7 8 9 10 

Variance 

ratio 
58.31 94.41 98.85 99.15 99.36 99.54 99.66 99.73 99.78 99.81 

PC bands 15 20 25 30 40 50 60 70   

Variance 

ratio 
99.89 99.93 99.95 99.96 99.98 99.99 99.99 99.99   

 

Figure 3 represents the test accuracy and training time of the 3D-CNN. Similar to the 2D-CNN, the test accuracy 

converges on a specific PC band in the 3D-CNN (IP: 50 PC bands, PU: 15 PC bands) corresponding to certain 

explained variance ratio (IP: 99.727%, PU: 99.895%). In conclusion, the stable classification performance of the 

PCA-CNN can be attained when using specific PC bands explaining certain variance regardless of two datasets and 

model architectures. 

 

Comparison between the two models 

The difference in the test accuracy of 3D-CNN with the Original-CNN is larger than that of the 2D-CNN in both 

datasets. The 3D kernel has more parameters than the 2D kernel, resulting in the 3D-CNN being more sensitive to 

the curse of dimensionality than the 2D-CNN. In the same context, the difference in the test accuracy at PU dataset 

is lower than in the IP dataset, where a higher spectral dimensionality further worsens the Hughes phenomenon. Thus, 

it can be concluded that the higher spectral dimensionality is and the more parameters in a model are, the more 

effective PCA is for reducing dimensionality. 

 

 

  
(a) IP dataset (b) PU dataset 

Figure 2 Result graphs for the 2D-CNN: (a) IP dataset, (b) PU dataset 
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(a) IP dataset (b) PU dataset 

Figure 3 Result graphs for the 3D-CNN: (a) IP dataset, (b) PU dataset 
 

 

Training time of the 2D-CNN, 3D-CNN and Original-CNN 

After the first few PC bands for the PU dataset, the PCA-CNN test accuracy is almost the same as that of the Original-

CNN. Even for the IP dataset, the test accuracy of the PCA-CNN is comparable or superior to that of the Original-

CNN from the first ten PC bands. This means that the first few PC bands contain enough spectral information to train 

CNN models with competitive performance to the original imagery. In addition, training time further highlights the 

significance of PCA for deep learning based HSIC. The four cases (2D-CNN and 3D-CNN in the IP and PU datasets) 

demonstrate that the training time in the meaningful minimum PC bands is much smaller than that in the Original-

CNN. In addition to the training time per epoch, the total number of epochs is higher than that in the Original-CNN, 

which meant that the total training time could range from as little as 10 minutes up to 76 minutes. Thus, the application 

of PCA for CNN-based HSIC enables a more efficient model training without significant differences in the 

classification performance. 

 

Model training history 

The instability of the Original-CNN can be visually confirmed through the model training history as well as the 

quantitative values of the test accuracy. Figure 4 illustrates the training histories of the 2D-CNN and 3D-CNN for the 

IP and PU datasets. The figure includes the histories in the fewest PC bands with poor classification results (2D-CNN: 

two PC bands, 3D-CNN: seven PC bands), the minimum PC bands showing stable classification accuracies (IP: 15 

PC bands, PU: 50 PC bands), and the Original-CNN. All graphs are depicted for the case of the highest number of 

epochs in each experiment under identical conditions. In the training history graph of the PCA-CNN, the validation 

loss and accuracy are less fluctuant for the fewest bands and minimum bands with good classification performance, 

while the validation accuracy in the fewest PC bands are fixed at too low values. However, the history graph of the 

Original-CNN is very unstable. This means that the relative lack of samples due to high spectral dimensionality makes 

the model overfit to the training data; hence, the validation is unstable. 

 

 Fewest Minimum Original 

2D-CNN 

in IP 

   
 2 PC bands 50 PC bands Original 

2D-CNN 

in PU 

   
 2 PC bands 15 PC bands Original 

6



3D-CNN 

in IP 

   
 2 PC bands 50 PC bands Original 

3D-CNN 

in PU 

   
 7 PC bands 15 PC bands Original 

Figure 4 Training history of the considered CNN models 
 

 

4. Conclusion 

 

In this study, we analyzed the impact of PCA for CNN based HSIC. The classification accuracy increased in 

proportion to the size of the spectral dimension reduced using PCA. However, the accuracy did not increase further 

after a certain level. The minimum PC bands allowing to achieve a stable accuracy could explain similar variance 

ratios for the two tested datasets and models, which means that PC bands explaining nearly 99.8% of the variance 

can perform the most efficient classification. With regard to the efficiency, the impact of PCA was better than when 

using the original hyperspectral imagery reducing the computational complexity and time. In addition, PCA can be 

applied more efficiently to models with more parameters and data with larger spectral dimension due to the lack of 

relative samples. 

In our future work, we will analyze the sensitivity of PCA to more complex and diverse models as well as other 

hyperspectral images with different cover conditions. Furthermore, the effect of the increasing number of samples on 

the applicability of PCA can be analyzed. 
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