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ABSTRACT:  Explorations of human spatial-temporal behaviors are possible because of the 
occurrence of interactions. Furthermore, the hierarchical structure of urban areas, an important part 
of geography, can also be discovered. This paper analyzes the spatio-temporal change 
characteristics of the Spatial Interaction Networks of Beijing (SINB). To begin with, we construct 
24 sequential snapshots of spatial population interaction on the basis of points of interest (POIs) 
collected from Dianping.com and taxi GPS data in Beijing. Then, we use the Jensen–Shannon 
distance measure and hierarchical clustering to integrate the 24 sequential network snapshots into 
four clusters. Finally, we improve the weighted k-core decomposition method combining the 
complex analysis method and weighted distance in geographic space. The results show that there 
are three layers discovered in the SINB, including the core layer, the bridge layer, and the 
periphery layer. The number of places varies greatly and the SINB shows an obvious hierarchical 
structure at the different periods. The core layer, between the 2nd Ring Road and the 5th Ring 
Road in Beijing, contains fewer places. The bridge layer is located from the 2nd Ring Road to the 
5th Ring Road in Beijing, and the number of places in this layer is more than in the core layer. The 
distributions of places in the periphery layer are the most enormous and wide. Our research plays a 
vital role in understanding urban spatial heterogeneity and helps to support decisions of urban 
planning and traffic management. 

1. INTRODUCTION

With the wide applications of spatio-temporal big data and improvements of the social sensing 

concept (Liu et al. 2015), analyzing spatially embedded networks and man–land relationship 

theory has gained popularity among many researchers. Sensing spatial interaction is one of the 

important aspects of social sensing. We can obtain traffic flows on the basis of aggregating an 

individual’s or vehicle’s trajectories at the collective level. In general, a trajectory begins with an 

origin point and ends at a destination point. The origin and destination (OD) interactive matrix 

consists of massive trajectories with the origin and destination points. Spatial assembly is an 

essential analytical step when aggregating individual-level geospatial data (Liu et al. 2015).  

At present, the research on spatial interaction mainly involves the analysis of the spatial 

interaction network (Xu et al. 2017 and Kang et al. 2013), the spatial interaction pattern (Zhu et al. 

2017; Takeuchi et al. 2017 and Tao et al. 2018), the spatial interaction strength model (Simini et 

al. 2012 and Liu et al. 2014), and the visualization of spatial interaction (Wood et al. 2010 and 

Yao et al. 2019). Research on the spatial interaction network depends on the approach of complex 

network analysis in order to analyze topological properties of the network, including the k-core 

value, centralization index, clustering coefficient, and average path length, etc. For example, 

Lordan and Sallan (2017) and Du et al. (2016) applied the k-core decomposition method to 

analyzing the hierarchical structure of the European airport network and Chinese airline network, 

respectively. Wang and her colleagues (2014) analyzed the evolution process of the air transport 

network of China from 1930 to 2012 by employing the network centralization index and the k-

core network method. Previous studies have accomplished a large amount of meaningful work. 

Compared with them, this research takes a somewhat different approach: 1) Places are regarded as 
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the unit of spatial analysis and 2) we redefine the weighted k-core decomposition method in view 

of the weight of the node and edge to obtain the importance of nodes. 

Our research, at the beginning, extracts the footprints of places using POI data as units. Next, the 

day is divided into 24 60-minute intervals and the 24 OD metrics are constructed by taxi GPS 

data accordingly. We merge them into four clusters for the following research because of their 

similarities. At last, we identify the evolution characteristics and hierarchy structure of Spatial 

Interaction Networks of Beijing (SINB) on the basis of the k-core decomposition method. The 

remainder of this paper is organized as follows. Section 2 introduces the data and processing. 

Section 3 presents the methods of the Jensen–Shannon distance measure, hierarchical clustering, 

weighted k-core decomposition, and additional methods. Section 4 analyzes the hierarchical 

characteristics of SINB at four periods of the day. Section 5 provides a summary, as well as a 

brief discussion of future relevance of the work 

2. DATA DESCRIPTION and PROCESSING 

 

2.1 Study Area and Data Description 

 

 We chose the area within the 6th Ring Road in Beijing as the study area, which covers 2,267 km2, 

accounting for 8% of the total area of Beijing (Figure 1). Taxi data is widely used in analyzing 

urban functions, urban structures, and human mobility patterns. This research applies a taxi 

dataset collected from Beijing, China, including more than 15,000 taxis from several anonymous 

taxi companies in consecutive weeks (6 June to 3 July 2016). In this paper, we only extract the 

taxi’s ID, the time when the passengers are picked up and dropped off, and the location where the 

passengers are picked up and dropped off. Table 1 shows an example of the processed taxi data. 

POIs collected from Dianping.com are also used in this study to extract the footprint of places. 

We capture nearly 80,000 businesses in Beijing on 6 June 2016 from Dianping.com. Then, we 

preprocess these data into the following categories: longitude, latitude, name, places, and 

abnormal points. The data record of a processed POI sample is shown in Table 2.  

 

 
Figure 1. Study area in Beijing, denoted by blue. 

 

Table1. Sample trip with pick-up and drop-off labels. 

Taxi 

ID 

Pickup 

time 

Pickup 

coordinate 

Drop-off 

time 

Drop-off 

coordinate 

158 2016-6-6 

6:27:21 

116.45806E 

39.98764N 

2013-6-6 

6:44:5 

116.40218E 

39.94539N 

205

6 
2016-6-10 

0:2:44 

116.58275E 

40.07931N 

2013-6-10 

0:31:47 

116.28463E 

40.02774N 
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300

24 
2016-6-29 

6:40:2 

116.45534E 

39.94887N 

2013-6-29 

7:11:26 

116.58095E 

40.07179N 

 

Table 2. The business data from Dianping.com data 

Place name Business name Latitude Longitude 

Wudaokou Yuye 39.99102N 116.3353E 

Wangjing Bafu 39.996445N 116.4815E 

Sanlitun Hema 39.93144N 116.4535E 

 

2.2 Extracting the Footprints of Places   

 

In this research, we applied a three-step workflow to extract continuous boundaries of cognitive 

places inside the 6th Ring Road of Beijing. In step 1, we apply the fuzzy set method based on 

adaptive kernel density estimation (Wang et al. 2014) for generating scores of each place using 

POIs. In step 2, the probability density of each place is converted into the membership degree by 

the membership function. In step 3, we constructed polygons from the footprints based on 

membership degree contours. As a result, we obtain 150 places within the 6th Ring Road of 

Beijing, as shown below. 

 
Figure 2. The distribution of the 150 places within the 6th Ring Road of Beijing. 

 

2.3 Construction of Spatial Interaction Networks 

 

We construct the Spatial Interaction Networks of Beijing (SINB) with places and their 

connections. The nodes of it are those places extracted before and the edges are the inter-place 

links connected by taxi trips. The SINB is defined as an undirected weight network G = (V, E). 

The node set is defined as V = {v1, v2, ⋯ , vn}, where n is the number of nodes. Additionally, the 

edge set is defined as E = {e1, e2, ⋯ , em, } , where m is the number of edges. In order to 

investigate the temporal characteristics of networks, we discretize the taxi data by hourly intervals. 

All trips extracted from the taxi trajectory data are aggregated based on the places. The 30-day 

taxi trip data are aggregated into one day to generate the 24 OD matrices from the original taxi 

data. The matrix is set as the one-hour taxi frequency running between nodes. We define the OD 

matrix from 0:00 to 1:00 as the initial network snapshot G0, the second one G1 is set from 1:01 to 

2:00, and the last one G24 is set from 23:01 to 23:00. 

 

3. METHODS 

 
3



3.1 Jensen–Shannon Distance between Snapshots   

 

Our goal is to examine layer similarity to choose the aggregation of a pair of similar layers rather 

than the aggregation of two very dissimilar layers. The quantum spectral Jensen-Shannon 

divergence between two layers was proposed as a similarity measure and clusters layers for 

networks (De Domenico and Biamonte, 2016; De Domenico et al. 2015). In general, the Jensen–

Shannon distance is evolved from the Kullback–Liebler distance and is a more suitable quantity to 

measure the dissimilarity between two matrices than the Kullback–Liebler distance. The distance 

measure based on the Jensen-Shannon divergence is given by 

Dij = √S(r) −
S(p) + S(q)

2
 

where Dij represents the Jensen–Shannon distance snapshots i and j, and takes values of [0,1]. The 

two density matrices p  and q  correspond to networks G1  and G2 , respectively, and r =
p+q

2
 . 

Neumann entropy is defined by S(p) =- ∑ λilog2
N
i=1 (λi),  where λi  is the ith eigenvalue of p . 

Neumann entropy S(r) and S(q) corresponds to matrices p and r, respectively. 

 

3.2 Hierarchical clustering method 

 

Hierarchical clustering merges the two nearest variables from bottom to top until all the variables 

are merged into an entire variable, while hierarchical divisive clustering is the reverse process. In 

this paper, the hierarchical clustering algorithm is applied to process the distance matrix between 

the snapshots. We use the shortest Euclidean distance to define the distance between clusters, and 

proceed by repeatedly applying three steps: 

(1) Using the distance between snapshots as variables; 

(2) Computing the similarity of the pair of variables based on a given distance measure and 

merging the highest similarity pair into a new cluster; 

(3) Updating the similarity between the new cluster and the former existing variables, repeating 

the procedure until only one node is left. 

 

3.3 The Weighted K-core Decomposition Method 

 

The definition of k-core, firstly introduced by Seidman (Seidman, 1983), is of fundamental 

importance to detecting the hierarchical structure and finding the relationship between the 

substructures and a visual representation of the network. A k-core method is derived by 

recursively removing all the nodes with a degree that is greater than or equal to k until all nodes in 

the remaining network have a degree of at least k (Carmi et al. 2017).  

Based on the weighted network decomposition proposed by Caras(Garas, Schweitzer and Havlin, 

2012), this paper redefines the weight of the link considering the spatial weight (distance between 

nodes) in geographical space. Distance is an important factor affecting spatial interaction which 

determines the cost of time and interaction. If there are the same spatial interactions and different 

distances between two nodes, the further the distance, the more important the connection they 

have. As shown in Figure 3, if SAB = SAC, DAB > DAC, the weight of link AB is more important 

than link AC. Improving the weight of the link based on the interaction distance, the new 

weighted degree of a node i is defined as 

 

ki
′ = {ki

α [∑(Sij ∗ Dij)

ki

j

]

β

}

1
α+β

 

where ki is the degree of nodes; Sij and Dij represent the amount and distance of links between the 

origin node i and destination node j, respectively; and α andβ are the adjustment parameters of 4



node degree and node weights. We only consider the case when α = β = 1 in this research. In this 

implementation, we normalize all the amount and distance of links. Similarly, our methods could 

be used to direct the network. 

 
Figure 3. Illustration of the k-core decomposition method 

 

4. RESULT 

 

4.1 Layer Aggregation of SINB 

 

The result of the similarity matrix and hierarchical clustering are shown in Figure 5(a) and Figure 

5(b), respectively, on weekdays. The x-axis and y-axis represent the 24 snapshot networks in 

Figure 5(a), and the heat map represents the similarity between pairs of layers, and the darker the 

color, the higher the similarity. The x-axis represents the 24 snapshot networks, and the y-axis is 

the interclass distance in Figure 5(b). The result of this procedure is a dendrogram that is a 

hierarchical diagram where some snapshot networks are the original leaves. At each step of the 

algorithm, we iteratively aggregate these layers or the clusters of layers with a minimal distance as 

an internal node. Finally, all original leaves correspond to one root. We obtain a multilayer with 

fully aggregated graphs. 

We calculated the ratio of between-cluster variance to the total variance for each possible k from 2 

to 8 to determine the number of clusters k that best divide the data. And we find the variance ratio 

is small when k = 4 on weekdays and weekdays. As a result, we divide the 24 snapshot networks 

into four temporal characteristics: early morning (0-6AM), morning (7-10AM), afternoon (11AM-

4PM), and evening (5-11PM). For the weekends, the heat maps of the similarity matrix and the 

hierarchical diagram are shown in Figure 5(c) and Figure 5(d), respectively. Here, we also choose 

a distance of 8 as the divider. Therefore, there are considerable differences between weekdays and 

weekends from the results of clustering. The periods of time are early morning (0-4AM), morning 

(5-11AM), afternoon (12AM-5PM), and evening (6-11PM). 
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Figure 5. Similarity matrix and hierarchical clustering. (a) The similarity matrix between 

snapshots on weekdays; (b) the hierarchical clustering on weekdays; (c) the similarity matrix 

between snapshots on weekends; and (d) the hierarchical clustering on weekends; 

 

4.2 The Evolving Properties of the SINB on Weekdays 

 

Figure 6 illustrates the distribution of all the places we studied in the three layers by order of four 

periods on weekdays. The important places in the spatial interaction network exist in the core 

layer. As a result, the main places are not the same for the different periods. Specifically, there are 

three places extracted as the main places, including the Asian Games Village-Xiaoying area, 

Beijing Capital International Airport, and Datun in the early morning. The 14 main places are 

discovered in the eastern and northern areas of the city, such as Beijing Capital International 

Airport, Datun, the Asian Games Village-Xiaoying area, Zhongguancun, Wangjing, North 

Taipingzhuang, and Dawang Road, in the morning. In the afternoon, moreover, the 24 identified 

main places with a peak level are similar to those places at the last period. A wide distribution 

occurs in the other three directions between the 3th and 4th Ring, except in the south of the city. 

The number of main places drops at night. Only two places (Asian Games Village-Xiaoying area 

and Datun) showed up at this period. The interesting thing is that these two places appear durably 

in the core layer all day. This is because they have already become a comprehensive downtown 

area with offices, businesses, residences, and recreational areas since the Olympic Games and 

Asian Games were held there, respectively. At the same time, some new arrivals, like institutes 

which have a profound effect on the education industry, lead to a strong relation with other places.  

The bridge layer connects the core and the periphery as a transition. Places in this layer mainly 

distribute between the 2th and 5th Ring of the city. There are the same numbers of places in the 6



early morning and in the morning, but different places. The main places include the Summer 

Palace, Xisi, Chaoyang Park-Tuanjie Lake, Beiyuanjiayuan, and Jinsong-Panjiayuan in the former 

period and then move to places like Sijiqing, Wukesong, Jianwai Avenue, Guanzhuang-

Changying, and the Yansha-Agricultural Exhibition Center. A decreasing trend occurs in the 

afternoon, during which only 33 places appear, such as Shuangjing, Wudaokou, Xueyuan Bridge, 

Beiyuanjiayuan, and Zizhu Bridge. However, the number of places increases at night, with a value 

of 40. Those places, including Beiyuanjiayuan, Beijing Capital International Airport, Jinsong-

Panjiayuan, Shibalidian, and Chaoyang Park-Tuanjie Lake, reflect the property of this layer. Some 

residential districts display repeated emergence in the four periods, like Zizhu Bridge, Xueyuan 

Bridge, Wudaokou, Qing River, Shuangjing, Dongzhimen, and Baiziwan. 

The peripheral layer is by definition the periphery of the network with a relatively low importance. 

Compared to the other two layers, the magnitude of places is greater in order of time period (106, 

95, 92, and 108 account for 71%, 63%, 61%, and 72%, respectively). There are constant places 

responsible for 53% of the total places in the peripheral layer. Also, their locations are variously 

distributed from the Ring 2th to the Ring 6th. 

 
Figure 6. The distribution of all places at the different periods in three layers on weekdays. (a) In 

the early morning; (b) in the morning; (c) in the afternoon; and (d) in the evening. 

 

4.3 The Evolving Properties of the SINB on Weekends 

 

In contrast to the spatial portions of places on weekdays, they fluctuate in number remarkably in 

the core layer, with a quiet morning and a busy afternoon at weekends. There are 23 main places 

located with an interruption of south of the city in the early morning. Only two places, however, 7



appear in this layer in the morning, including Asian Games Village-Xiaoying and Beijing Capital 

International Airport. The 23 increasing places spread across the regions between the 2nd and 5th 

Ring Road in the afternoon. In addition, northern and eastern Beijing contributes 15 places, which 

are all places in this layer that appear at night. The stable existence of two places (Asian Games 

Village-Xiaoying and Beijing Capital International Airport) take us by surprise in this layer at 

weekends.  

 Most places in the bridge layer are distributed popularly from the 2nd to 5th Ring of city and the 

locations of others are sprinkled throughout the external frontiers. The main places are discovered 

as Jianguomen-Beijing Railway Station, Wangjing, and the Summer Palace (in the early morning); 

Datun, Shuangjing, and Wangjing (in the morning); Jiuxian Bridge, Sanlitun, and Huangtian 

Bridge (in the afternoon); and Wukesong, Sijiqing, and Huangtian Bridge (at night). What is more, 

there are six constant places in this layer, including Jiuxian Bridge, Hangtian Bridge, Dewai 

Avenue, Dahongmen, the Yansha-Agricultural Exhibition Center, and Yang Bridge-Muxuyuan.  

The number of places in each of the four periods in the peripheral layer is as follows: 84, 114, 76, 

and 90, comprising 56%, 76%, 51%, and 60% of total places, respectively. There is a large 

proportion of places in this layer in the morning. This is because residents do not walk about too 

early and prefer to choose haphazard trips at the weekends. Despite the fact that there is a time 

irregularity in the four periods, 40% of places like Beidadi, Beijing Eastern Railway Station, 

Caishikou, and Caofang always show up.  

 

 
Figure 8.  The distribution of all places at the different periods in three layers on weekends. (a) In 

the early morning; (b) in the morning; (c) in the afternoon; and (d) in the evening. 
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Spatial interaction networks play a crucial role in the human mobility transportation of economics, 

culture, and the spread of transport diseases. The SINB is also dynamic, which reflects the 

passenger mobility daily and further reveals the spatial structure. In this paper, the SINB has been 

studied from the perspective of multi-layer temporal networks。 

Spatial assembly is quite different between three layers in the different periods. A small and 

stationary distribution is found in the core layer, but the dispersal of places is throughout the area 

between the 2nd and 5th Ring, as well as Beijing Capital International Airport. Secondly, the 

number of places in the bridge layer is relatively higher than in at core, while their distribution is 

similar. However, the peripheral places are cosmic throughout the entire study area. At weekends, 

however, the situation changes. Gathering the connections in the peripheral layer in the morning 

becomes normal, and different layers attract internal connections between places in all the periods 

except for the morning.  

Our research offers a new perspective for analyzing urban spatial structures based on the 

importance of nodes, yet there are limitations of our study. The SINB in the real world are 

changing over time. Choosing an appropriate time interval could help us to explore the 

characteristics of the SINB better. As a result, the first problem is our fixed time interval, which 

might cause a huge deviation of consequence. In future research, the length of the time span 

should change dynamically to adapt the temporal features in the network. 
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