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ABSTRACT: Point cloud acquired by LiDAR (Light Detection and Ranging) sensor inevitably contains errors due to 
limitations of hardware. In these errors, systematic errors can be specified by photogrammetric calibration which can 
lead to the improvement of accuracy of the data, providing accurate geometrical features such as planes and lines. On 
the other hand, recent point cloud registration technique such as SLAM (Simultaneous Localization and Mapping) uses 
lidar odometry for its front end. Lidar odometry exploits geometrical features of point cloud for its motion estimation 
when the point cloud is too coarse for point-based feature extraction. Since majority of sensor systems for mobile 
mapping system uses rotating multi-beam laser scanner which acquires relatively coarse point cloud due to its fixed 
vertical angle, they hardly provide dense point cloud by on its own. Considering these facts, in this study, to improve 
the accuracy of point cloud and its geometrical features and improve sensor measurement accuracy, comprehensive 
analysis of lidar self-calibration was conducted via simulation. Self-calibration was conducted by plane-based model, 
since conventional method using GCPs (Ground Control Points) cannot be implemented. Self-calibration results were 
compared in different calibration targets and sensors configurations. With results, we propose a guideline of 
establishment of calibration dataset to achieve reasonable self-calibration accuracy. Through this experiment, we expect 
this method to attribute to improve sensor measurement accuracy and geometrical feature in on-site calibration, and data 
optimization process while registering point cloud data.  

1. INTRODUCTION

   LiDAR (Light Detection and Ranging) sensor acquires 3D information with high accuracy. In a past decade, the 

sensor development enabled the use of lidar sensor to various applications such as mobile mapping, Simultaneous 

Localization and Mapping (SLAM), digital surface model in the field of remote sensing, surveying, and robotics. 

More recently, the sensor became more portable and compact the more lidar sensor such as Velodyne HDL-64/32E, 

VLP-16, Hokuyo UTM-10/20/30LX were used for various applications such as mobile mapping system. Multi-beam 

laser scanner, which Velodyne produces, is one of the extensively used lidar which gives fairly light-weighted, 

compact, and cheap sensor to interested users. It consists of simultaneously rotating pairs of laser emitters and 

receivers within compact sensor pod. Majority of mobile scanning related researches uses Velodyne lidar to its sensor 

system.  

   In application of autonomous vehicle, five sixth of vehicles that finished the DARPA Grand challenge used 

Velodyne’s HDL-64E. Geiger et al. (2012) acquired and released the popular KITTI dataset for the benefit of 

community, which acquired its 3d point cloud using Velodyne HDL-64E on moving vehicle platform. On the other 

hand, Hess et al. (2016) developed its sensor indoor mobile mapping backpack system using VLP-16 as known as 

google cartographer. Shamseldin et al. (2018) constructed the sensor system using Velodyne VLP-16 for their indoor 

lidar mobile mapping system. In addition to indoor backpack, autonomous vehicle, or robotic platform, Ravi et al. 

(2018) mounted Velodyne HDL-32E and VLP-16 on unmanned aerial vehicle (UAV) and developed its mobile 

mapping system. 

   Despite its cost-efficient and mobile advantages, the sensor contains systematic errors. Since each mechanically 

designed multi lasers measure the range by time-of-flight sensor at the same time, point cloud inevitably contains the 

offsets in range and angle measurements within each laser. These systematic errors can cause translations and rotation 

of point cloud data. To be implemented in application of mobile mapping, overall accuracy of point cloud expected 

to be minimized. 

   In computer vision community, there has been a research to optimize point cloud data to remove undesirable data 

using RANdom SAmple Consensus (RANSAC) algorithm. Schnabel et al. (2007) proposed RANSAC-based plane 

detection from point cloud to remove outliers. This data optimization process, however, may exclude inaccurate point 

cloud, yet remain data still contain systematic errors. To solve this problem and raise the accuracy of point cloud data, 

sensor calibration process should be pre-performed before its applications. 

The 40th Asian Conference on Remote Sensing (ACRS 2019) 
October 14-18, 2019 / Daejeon Convention Center(DCC), Daejeon, Korea TuP-27

1



1.1 Related Work 

 

   In surveying community, using photogrammetric technique, there has been extended researches to delineate 

intrinsic parameters of lidar sensors. Sklaloud and Lichti (2006) first presented rigorous approach to bore-sight self-

calibration in airborne laser scanning by conditioning the georeferenced lidar target points to lie on common plane 

surfaces. In their work, it is more aimed to estimate extrinsic parameters between the IMU and lidar unit, considering 

only range offset for the intrinsic parameter. It is noteworthy that they also estimated 4 plane parameters within each 

plane in their adjustment model. Self-calibration analysis on Velodyne HDL-64E was then conducted by Glennie and 

Lichti (2010) and Muhammad and Lacroix (2010). In Glennie’s work, different scan stations with two fixed stations 

were used to delineate scale parameter. In Muhammad’s work, restricted positional conditions were designed to 

simplify cost function, however this model is not applicable to adjust additional parameters. Gerardo et al. (2011) 

placed Velodyne-64E in the center of precisely-measured calibration targets. Using pattern planes, they exploited 

ancillary plane orthogonal distance to minimize planar misclosure using Levenberg-Marquardt algorithm.  Chen and 

Chien (2012) proposed fully-automated on-site recalibration of intrinsic parameters of Velodyne HDL-64E by 

linearizing the intrinsic parameters. Unlike predominant point-based or plane-based self-calibration methods, Chan 

et al. (2015) presented a new cylinder-based self-calibration method. The method has more flexibility in terms of 

geometrical features to condition and avoiding high linear dependencies. Glennie et al. (2016) also conducted 

calibration and stability analysis of the Velodyne VLP-16 using same mathematical model they used in their previous 

work. 

   Overall, using geometrical features such as plane or cylinder with static sensor stations and precisely designed 

calibration targets, previous studies presented rigorous self-calibration approach to acquire high accuracy 3D 

information using multi-beam laser scanners. Nevertheless, previous studies were more aimed to develop a static self-

calibration approach. Therefore, a careful analysis of self-calibration method for mobile mapping application is 

needed. 

 

 

1.2 Purpose of Study 

 

   The objectives of this study are: (1) to analyze the effect of using different calibration dataset (i.e., change of 

calibration targets, sensors, and used points), and (2) to formulate efficient self-calibration method that can be 

exploited on-site calibration before and during the applications of mobile mapping. 
   One of the limitations of traditional methods is that they used fixed the position of two or multiple scan station or 

measured the distance between planes and sensors. These may mitigate the strong correlations among position of 

station, scale parameter, and orthogonal distance between planes and sensors, yet traditional methods need ancillary 

data using highly accurate surveying equipment such as total station which hinders the availability of on-site 

calibration in mobile mapping. Therefore, self-calibration method which does not require any ancillary data needs to 

be presented for the use of mobile mapping algorithm. 

   Next, the chance of local optimum can be high in the adjustment for the following reasons. First, the value of 

parameter estimation through the adjustment expected to be very small and correlations between parameters are 

relatively high. Second, all points from point cloud can be hardly included in the adjustment due to lack of computer 

memory. Therefore, self-calibration accuracy may not appear to be stable when it is applicated in different dataset 

(Glennie et al., 2016). Although estimated calibration parameter may not show the same improvement through all 

point cloud, it can be applicated in short-term data optimization during mobile mapping algorithm such as SLAM. 

Knowing the fact that different scan station in conventional static self-calibration method can be roughly interpreted 

as different frames in mobile mapping, we analyzed the effect of different data acquisition method within expected 

trajectory to propose short-term self-calibration data optimization method. 

   Self-calibration and correlation analysis of parameters were performed under simulation. At this stage, 

mathematical and stochastic models were used which have been well-established and verified in previous studies. 

The reason for conducting the experiments through simulation is that the simulation test has the following advantages. 

First, the locations of the lidar and calibration targets can be set to exact values in the simulation. In other words, all 

the involved orientation parameters can be perfectly controlled in simulation. Contrarily, in the case of self-calibration 

using real data, there is a limitation in the accurate setting of the positions of the lidar and calibration targets because 

of an error in the setting of each variable even though it is a sophisticated experiment. Next, simulation can more 

clearly confirm the accuracy of results than using real data. That is, since the simulation is carried out after setting all 

the involved variables, the estimated values from self-calibration can be directly compared and analyzed with the 

preset values. Such comparison is almost impossible in the case of real data. Lastly, simulation can handle different 

types of calibration targets, lidar orientations without any limitation. Eventually, the results from simulation can 

reduce the time and economic costs of real experiments (Choi et al., 2019). 

   In the application of mobile mapping such as SLAM which uses geometrical features to estimate its exterior 

orientation parameters, we expect this technique to provide accurate such feature by optimizing the point cloud data. 
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2. MATHEMATICAL MODEL 

 

   The mathematical model is based on a functional model which minimizes the misclosure of common planes. This 

section first introduces ideal system of Velodyne VLP-16, then objective function and stochastic model will be 

followed. The remainders describe adjustment model that do not require ancillary data such as precisely measured 

distance between lidar and calibration target to estimate linear scale factor.  

 

2.1 Point Observation Model of Velodyne VLP-16 

 

   The Velodyne VLP-16 scanner consist of 16 individual laser emitter and receiver pairs which are individually aimed 

in 2° increments over the 30° of vertical field of view. The manufacturer defines a set of parameters for each laser to 

model the deviations from ideal conditions. The computation of cartesian coordinate system is given by: 

 

[
𝑥
𝑦
𝑧
] = [

(𝑆𝑖  𝑅 + 𝐷𝑖) cos(𝛼𝑖) sin(𝜃 + 𝜃𝑖) − 𝐻𝑖 cos(𝜃 + 𝜃𝑖)

(𝑆𝑖  𝑅 + 𝐷𝑖) cos(𝛼𝑖) cos(𝜃 + 𝜃𝑖) + 𝐻𝑖 sin(𝜃 + 𝜃𝑖)

(𝑆𝑖  𝑅 + 𝐷𝑖) sin(𝛼𝑖) + 𝑉𝑖

] (1) 

 

where    𝑅 = raw distance measurement 

𝜃 = encoder angle measurement 

𝑆𝑖 = distance scale factor for laser i 

𝐷𝑖  = distance offset for laser i 

𝛼𝑖 = vertical rotation correction for laser i 

𝜃𝑖 = horizontal rotation correction for laser i 

𝐻𝑖  = horizontal offset from scanner frame origin for laser i 

𝑉𝑖 = vertical offset from scanner frame origin for laser i 

 

 

 
(a) (b) 

 

Figure 1. Coordinate system of the Velodyne VLP-16.  

(a) Scanner layout in vertical plane. (b) Scanner layout in horizontal plane. 
 

Among these intrinsic parameters, the horizontal and vertical offset were excluded in our work due to following 

reasons: (1) calibration parameter are very weakly observable, (2) they are highly correlated to the horizontal and 

vertical rotations respectively in magnitude between 0.92 and 0.98 (Glennie and Lichti, 2010; Glennie, 2012), (3) 

physical location of each laser emitter and receiver pair is precisely located from the system CAD drawings, (4) the 

errors induced by imprecise estimation of horizontal and vertical offset do not depend on the variation in the distance 

of scanned object (Muhammad and Lacroix, 2010). Therefore, the factory values for these parameters are held as 

fixed and only four parameters per laser were solved for in the final adjustment. 

 

2.2 Plane-based Functional Model 

 

A plane-based calibration approach presented by Skaloud and Lichti (2006) was implemented in out work, to estimate 

intrinsic parameters for VLP-16 and plane parameters for calibration targets. The planar observational model is based 

upon conditioning the lidar returns to lie on common planar surfaces. Since plane parameters are also estimated in 

adjustment model, true planar surface locations and orientations do not need to be specified in this model. The 

𝛼 

𝜃 
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functional model for conditioning the points can be expressed as: 

 

〈 g𝑘⃗⃗ ⃗⃗  ⃗, [𝑟 
1
] 〉 = 0 = 𝑓( 𝑙 , 𝑥1⃗⃗  ⃗, 𝑥2⃗⃗⃗⃗ ) (2) 

 

where, g𝑘⃗⃗⃗⃗ = [g1 g2 g3 g4]
𝑇 are the observable parameters of a plane k on which the lidar points are conditioned,  𝑟  

is the vector of lidar points within an arbitrarily defined local coordinate system, 𝑥1⃗⃗  ⃗ = [𝑆𝑖  𝐷𝑖  𝛼𝑖  𝜃𝑖]
𝑇 , and 𝑥2⃗⃗⃗⃗  is the 

vector of plane parameters. 

 

   𝑖𝑡ℎ  point different scan locations, j, can be calculated in a consistent local coordinate frame via a rigid body 

transformation of the form: 

 

𝑟 = 𝑅(𝑤, 𝑝, 𝑘)𝑗 𝑙𝑖𝑗⃗⃗  ⃗ + 𝑡𝑗   (3) 

 

where, R(w,p,k) and 𝑡𝑗 are the rotational transformation matrix and translation vector between the 𝑗𝑡ℎ scanner space 

and the locally defined coordinate frame respectively, and 𝑙𝑖𝑗⃗⃗  ⃗ is the scanner space coordinates of point i, given by 

Equation (1). 

 

   Note that the direction cosines must satisfy the following unit length constraint: 

 

g1𝑗

2 + g2𝑗
2 + g3𝑗

2 − 1 = 0 = g(𝑥2⃗⃗⃗⃗ )  (4) 

 

2.3 Least Squares Solution 

 

   The observations and parameters of the objective function are not separable, and each function includes more than 

one observation. Therefore, in this study, the combined adjustment model is used. The model minimizes the 

deviations of the individual lidar points from the planar constraints given by Equation (2). The VLP-16 provides two 

observations for each point: (1) range, (2) horizontal encoder angle. For each laser, we considered four unknown 

parameters. Also, point cloud were acquired at unknown location. Therefore, six unknowns for each epoch must be 

included. In the adjustment of extrinsic parameter, all 16 laser angular offsets cannot be estimated simultaneously.  

Therefore, reference laser (laser 1) was held fixed. That gives the basic quantities of the least squares adjustment in 

Table 2. 

 

Table 1. Self-calibration adjustment quantities 

# of conditions m = I 

# of unknowns u = u1 + u2 

   = {6*(epochs-1) + 4*(lasers-1) + 2} + 4*P 

# of observations n = 2*I 

# of constraints c = P 

# of degrees of freedom r = I – u + c 

 

 

   The solution to a least squares adjustment of the functional model is described in detail in (Skaloud and Lichti, 

2006). The only difference in our work, is that for the purpose of eliminating the need of ancillary data such as 

precisely-measured calibration target distance from sensor origin or fixed scan station locations, not only plane 

orientation parameter was treated as weighted parameter, but also the linear scale factor as observable around 1. 

 

3. SELF-CALIBRATION DESIGN 

 

   Typically, a higher number of input features and scan stations are needed for the multi-beam laser scanner since the 

vertical angle of each laser beam is coarsely fixed (Glennie and Lichti, 2010; Chan et al., 2013). Considering their 

study, before conducting various experiments under different configurations, the minimum conditions of contained 

planar surfaces to perform reliable calibration should be analyzed. In examining the effectivity of the number of 

containing planar surfaces, it becomes clear that at least three planes (i.e. ceiling, floor, and wall) should be included 

in calibration data. Therefore, in this study, four cases of calibration dataset were established to contain at least three 

common planes. In our experiment, 20m x 10m x 6m of room were set up. Figure 2 describes simulated calibration 

site and a closer look of planar misclosure due to intrinsic parameters. 
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(a) Simulated Calibration Site; Color coded by laser id (b) Planar Misclosure 

 

Figure 2. Simulated Calibration Site and Point Cloud 
 

3.1  Establishment of Calibration Dataset 

 

   In this section, four cases of calibration dataset by different sensor position and orientation will be discussed. 

Assuming mobile mapping system acquires point cloud of simulated room, there are about four cases that can be used 

as self-calibration dataset. 

 

  
(a) Case 1 (b) Case 2 

  
(c) Case 3 (d) Case 4 

 

Figure 3. Four Cases of Calibration Datasets 

 
   Figure 3(a) depicts the sensor configuration along the expected trajectory, while (b) depicts the sensor configuration 

across the expected trajectory. (c) and (d) are the cases of different combination of (a) and (b). Note that no column 

planes were included in any calibration dataset.  

 

4. ANALYSIS OF RESULTS 

 

   Overall, the geometric calibration of the laser instruments improved the accuracy of the resultant point clouds except 

for case 3. Calibration accuracy was measured by 1) RMSE (i.e. true error) of range measurement, 2) RMS-residuals 
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of planar misclosures, and range measurement, and 3) correlations between parameters. 

 

4.1  Planar Misclosure 

 

   Since the experiment was conducted under simulated situations, it is possible to compute the true error (RMSE) 

and residuals (RMS-residuals), respectively. A plot of planar misclosures before and after adjustment is shown in 

Figure 4 and statistics on the misclosures are given in Table 2. 

 

 Before After 

(a) C
ase 1

 

  

(b
) C

ase 2
 

  
(c) C

ase 3
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(d
) C

ase 4
 

  
 

Figure 4. Planar Misclosures Before and After Adjustment within Four Cases 

 
Table 2. Misclosures statistics before and after adjustment 

  Planar Misclosure 

Units (m)  Min Max Mean RMSE 

Before 

Case 1 -0.1397 0.1842 -0.0079 0.0398 

Case 2 -0.1139 0.0786 -0.0042 0.0263 

Case 3 -0.2500 0.1584 -0.1140 0.1296 

Case 4 -0.1867 0.1143 -0.0433 0.0554 

After 

Case 1 -0.1273 0.0848 0.0001 0.0231 

Case 2 -0.1135 0.0800 -0.0005 0.0240 

Case 3 -0.2307 0.1587 0.0014 0.0373 

Case 4 -0.1074 0.1145 0.0004 0.0261 

 

   Examination of the results in Figure 4 and Table 2 shows overall improvement in precision of sensor as a result of 

the calibration with an exception for Case 3. Among four different cases, Case 4 showed the best improvement 

comparing to other cases. It is noteworthy that increase of epoch does not necessarily related to increase of accuracy. 

 

4.1.1 Observation Residual 

 

   Measurement residuals from the adjustment were also examined in addition to examining planar misclosure. For 

the measurement, only range data were analyzed for this study. Figure 5 shows plots of the final measurement residual 

for all points for the least squares adjustment. For the analysis, direct comparison between true range and adjusted 

range was carried out in favor of simulation experiment. 

 

  
(a) Case 1 (b) Case 2 
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(c) Case 3 (d) Case 4 

 

Figure 5. RMSE of Range After Adjustment (All Measurements) 

 

   For Case 1 and 3, there are still systematic effects since the range residuals do not appear to be normally-distributed. 

For Case 2, it shows more normally-distributed plot than Case 1 and 3. For the analysis of Case 4, it shows normal 

distribution, indicating self-calibration was conducted successfully in this case. 

 
Table 3. RMSE of Range Statistics for All Measurements 

 RMSE of Range (All measurement) 

Units (m) Min Max Mean RMSE 

Case 1 -0.1627 0.1515 -0.0234 0.0413 

Case 2 -0.1943 0.0731 -0.0545 0.0631 

Case 3 -0.2098 0.2411 0.0579 0.0759 

Case 4 -0.1261 0.1380 0.0064 0.0317 

 

   From Table 3, RMSE showed higher value than expected, which is given noise level 0.03m. Case 4 showed the 

best performance among all cases. Mean value of range residual showed nearly zero in Case 4. 

 

4.2  Parameter Correlation 

 

   Correlation between unknown parameters were also examined to measure self-calibration accuracy. As shown in 

Figure 5, overall strong correlation between scale factor and Xo, Yo, Zo, and d. This is to be expected, whereas there 

is no network scale constrain excluding the weighted scale parameter for reference laser. Further analysis to decouple 

correlation among these parameters should be studied. 

 

  
(a) Case 1 (b) Case 2 
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(c) Case 3 (d) Case 4 

 

Figure 6. Parameter Correlations 

 

4.3  Accuracy of Estimated Parameters 

 

   Since the calibration parameters for the laser scanner were solved simultaneously in a least square adjustment, 

accuracy of estimated parameters can be calculated through error propagation. Table 4 presents the estimated 

accuracy correspond to each unknown parameter. In case of accuracy of estimated parameter, Case 2 shows the best 

accuracy of exterior parameters. Further analysis is required for this result. 

 

Table 4. Estimated Parameter Accuracy 

 
Xo 

(m) 

Yo 

(m) 

Zo 

(m) 
w 

(deg) 
p 

(deg) 
k 

(deg) 
S 

D 

(m) 
α 

(deg) 
θ 

(deg) 
g1 g2 g3 

g4 

(m) 

Case 1 3.0485 0.2310 0.4070 0.0013 0.0005 0.0001 0.0339 0.0060 0.0015 0.1265 0.0005 0.0053 0.0083 1.6625 

Case 2 0.0113 0.0807 0.0113 0.0004 0.0001 0.0001 0.0114 0.0031 0.0006 0.0011 0.0000 0.0000 0.0001 0.7199 

Case 3 2.5045 0.1586 0.1261 0.0019 0.0010 0.0003 0.0355 0.0088 0.0018 0.0023 0.0000 0.0001 0.0003 2.2526 

Case 4 1.9175 0.1007 0.1149 0.0009 0.0004 0.0002 0.0136 0.0033 0.0006 0.0012 0.0000 0.0000 0.0001 0.8772 

 

5. CONCLUSIONS  

 

   In this study, we conducted self-calibration with various calibration datasets under simulation. Four different cases 

were compared to confirm the efficient condition for performing on-site self-calibration and data optimizing. Self-

calibration accuracy was measured by examining and analyzing the deviations of parameters, correlations between 

parameters, RMS-residual of planar misclosure, and RMSE of observations. Overall, self-calibration accomplished 

improvement of sensor precision. Strong correlation among exterior parameters, orthogonal distance between sensor 

and planar surfaces, and linear scale factor was examined. In our experiment, Case 4 showed the best performance, 

achieving RMSE of the range residual in the magnitude of predetermined noise level, while Case 2 showed the lowest 

average correlations of exterior parameters and the best accuracy. 

   Nevertheless, our study has following limitations. First, reference epoch should include all planar feature to provide 

constraints. Such condition has lower chance to be satisfied if the user not acquire point cloud data intentionally. 

Second, self-calibration accuracy does not appear to be stable when it was applicated to other sets of data. 

Recalibration must be performed to be applicated other data. To reduce the error in estimation, precisely conditioned 

calibration should be performed. Lastly, out work needs to be validated in real data. 

   For future study, different least squares models such as minimizing normal distance of conjugate geometrical 

features between different scan station will be performed to eliminate the limitations which reference epoch should 

include all planar features. Moreover, validation of algorithm with real world data will be studied. 
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