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ABSTRACT: Fine dust, also known as particulate matter, refers to very small matters floating 

in the atmosphere, and has become one of major concerns in modern society. Fine dust arises 

not only by anthropogenic emissions, but also by natural sources, and previous studies have 

revealed that it intensifies, migrates and decreases by several hydrometeorological factors, such 

as solar radiation, wind and precipitation. The people of South Korea get information of fine 

dust concentration from Air Quality Monitoring Systems (AQMS). However, due to the spatial 

imbalance of the AQMS observatories, those who live in places without observatories are using 

nearest-neighbor-interpolated fine dust information. Therefore, it is crucial to monitor fine 

dusts across large area to assess spatial variability of fine dust concentration. In this study, we 

tried to analyze the influences of hydrometeorological factors on fine dust concentration and 

investigate the capability of the developed model in estimating spatial variability of fine dust, 

by using Bayesian Model Averaging (BMA). By analyzing Posterior Inclusion Probabilities 

(PIP) of the hydrometeorological variables chosen from Global Land Data Assimilation System 

(GLDAS), we could assess positive/negative influences of each variable on the variance of fine 

dust concentration (e.g. positive influence of solar radiation, negative influence of 

precipitation). The optimal regression model from weighted average of the models developed 

by BMA showed moderate correlation with ground-based observation of fine dust. Compared 

with the nearest neighbor method, the model performed better in expressing spatial variability, 

implying the possibility of global scale monitoring of fine dust. 

1. INTRODUCTION

Recently, fine dust is receiving very high social attention than any other time, with increasing 

days with high concentration of fine dust. Fine dust refers to dusts floating in the atmosphere in 

form of aerosol, and is classified into PM10 (<10μm in diameter) and PM2.5 (<2.5μm in diameter). 

These particles are known to be easily inhaled and cause respiratory- (Ristovski et al., 2012), lung- 

(Zelikoff et al., 2003) and cardiovascular- (Nishiwaki et al., 2012) related diseases. Also, in 

serious cases, they can cause premature deaths (Dominici et al., 2015; Zúñiga et al., 2016). 

Therefore, it is crucial to establish the sources of fine dusts and investigate ways to reduce the 

damage. 

Fine dust has characteristics of both primary pollutants directly emitted from pollution sources 

such as cars and factories, and secondary pollutants which are formed from chemical reactions in 

the atmosphere (Choi et al., 2013; Kim et al., 2016). At the same time, in case of Korea, there are 

numerous long-distance dust events originating from central Asian desert and nearby countries. 

Therefore, it is hard to estimate the exact reason or sources of fine dust events and assume damages 

(Han et al., 2006; Jung et al., 2010). As mentioned, fine dust events are not only affected by 

anthropogenic sources, but also the location at which the events take place, and 
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hydrometeorological factors controlling their migration, mitigation and intensification. Therefore, 

it is essential to grasp hydrometeorological factors’ role in driving variations in fine dust 

concentration (Nam et al., 2018). There were several studies conducted dealing with the 

relationships between fine dust concentration and hydrometeorological variables, such as 

precipitation (Ouyang et al., 2015), soil moisture (Kim and Choi, 2015), solar radiation and 

temperature (Préndez et al., 1995), and relative humidity (Shin et al., 2007). 

 

The Korean ministry of environment is operating an Air Quality Monitoring System (AQMS) and 

providing real-time domestic air pollution data through the website (www.airkorea.or.kr). AQMS, 

although suitable in showing local air pollution concentration in real-time, has limitations in 

spatially and temporally assess movement of fine dusts (Kim et al., 2018), and in providing 

accurate information in rural areas, in which the observatories are not present. This kind of 

problem has been solved through incorporating satellite data (Engel-Cox et al., 2004; Gupta et al., 

2006; Van Donkelaar et al., 2010), since they are better in representing an area. 

 

In this study, we tried to analyze hydrometeorological variables that are thought to have impact 

on the variation in fine dust concentration, especially PM2.5, with hydrometeorological data from 

Global Land Data Assimilation System (GLDAS). First, we assessed the effects of each 

hydrometeorological variable has on fine dust concentration by Bayesian Model Averaging 

(BMA), and we developed multi-variate regression model with the selected variables and aerosol 

data from two satellites (Terra and Aqua). Finally, by using the developed model we made fine 

dust concentration maps to investigate the possibility of the model in grasping spatial distribution 

of fine dusts. 

 

2. STUDY AREA & DATA 

 

2.1. Study Area 

 

The study area of this study is given in Figure 1. South Korea is located at 125˚ - 131˚ in longitude 

and 33˚ - 38˚ in latitude. The whole country mainly consists of forest regions, followed by crop 

land and urban areas. Due to the location of the country, it suffers from long-distance travel of 

Asian dust, originating from central Asian desert, every spring. There includes over 300 AQMS 

observatories through the country, which was used as reference data. As mentioned above, 

spatially non-continuous observatories forces people living in rural areas to use nearest-neighbor-

interpolated concentration information. 

 

Figure 1. (a) Study area (South Korea), (b) Distribution of AQMS observatories and (c) land cover 

classification from Environmental Geographic Information System (EGIS). 
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2.2. Dataset 

 

First of all, daily fine dust concentration data were acquired from the AQMS (Figure 1-b). The 

number of observatories was 340 and among those, data from only 199 observatories providing 

PM2.5 concentration were used in this study. For the analysis about the relationships between 

hydrometeorological variables and PM2.5, we selected Shortwave/Longwave Radiation (SW, LW, 

respectively), Air Temperature (Ta), Precipitation (P), Soil Moisture (SM), Specific Humidity 

(SH), Evapotranspiration (ET), Wind Speed (WS) and Air Pressure (Pa) from GLDAS, which is 

reanalysis data. They were given in 3-hourly temporal resolution, so they were averaged to be 

daily. 

 

For developing multi-variate regression model, which will be described in section 3, Aerosol 

Optical Depth (AOD), which is the degree of light extinction by aerosol in a column of atmosphere, 

from MODerate resolution Imaging Spectroradiometer (MODIS) onboard on satellites Terra and 

Aqua of National Aeronautics and Space Administration (NASA) were used. Finally, Planetary 

Boundary Layer Height (PBLH) data from Modern-Era Retrospective Analysis for Research and 

Applications, Version 2 (MERRA-2) were used to calibrate AOD data. 

 

3. METHOD 

 

The whole dataset was collocated spatially and temporally to match with the AQMS data. Two 

AOD products from Terra and Aqua (MOD04 and MYD04, respectively), which were given in 

level 2 data, were preprocessed into gridded data and averaged to produce daily AOD values. 

Every gridded data was resampled to be matched in pixel size, 5km, and classified according to 

the land covers and the locations of the observatories. 

 

3.1. Bayesian Model Averaging 

 

BMA was used to analyze the degree of impact each hydrometeorological factor has on fine dust 

concentration variation and select factors that have effect large enough (Tran et al., 2018). First, 

2k number of regression model is developed using k variables, as in equation 1. 

 

y =  α + β1x1 + β2x2 + ⋯ + β𝑘x𝑘 + 𝜀                                             (1) 

 

Here, y refers to the dependent variable, which is fine dust in our case, x refers to k explanatory 

variables (9 hydrometeorological factors), α a constant, β coefficients and ε an error term. By 

applying Bayesian theory as given in equation 2, we get Posterior Model Probability (PMP), 

which is the percentage of dependent variable’s variance explained by the model. P(Mj|Obs) refers 

to the probability of model Mj being true when given the data, P(Mj) refers to the belief of model’s 

prior probability beforehand. In this study, it was assumed that all models were independent to 

each other and had uniform prior probability distribution. 

 

P(𝑀𝑗|𝑂𝑏𝑠) =
𝑃(𝑂𝑏𝑠|𝑀𝑗)𝑃(𝑀𝑗)

∑ 𝑃(𝑂𝑏𝑠|𝑀𝑖)𝑃(𝑀𝑖)2𝑘
𝑖=1

                                                (2) 

 

Finally, by summing up the PMPs of the models including each explanatory variable, we get 

Posterior Inclusion Probability (PIP), which implies the degree of impact each 

hydrometeorological factor has on the variation of fine dust concentration. With these PIP values 
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we selected hydrometeorological factors that are thought to have significant impact on fine dust 

concentration variation. 

 

3.2. Multi-variate Regression Model 

 

As an indirect quantity of the total aerosol in the column of atmosphere, AOD can be defined as 

an integral of extinction of light along the column, as in equation 3 (E. Emili et al., 2010): 

 

𝐴𝑂𝐷 = 𝜋 ∫ 𝑄𝑒𝑥𝑡(𝜆, 𝑟)𝑁(𝑟, 𝑧)𝑟2𝑑𝑟𝑑𝑧
∞

0
                                          (3) 

 

where Qext refers to the extinction efficiency and N(r,z)drdz refers to the size distribution function, 

which represents number of particles between z and z+dz and between r and r+dr. 

 

PM2.5 can be expressed as in equation 4, assuming spherical particles. 

 

𝑃𝑀2.5 =
4𝜋

3
∫ 𝑁(𝑟, 0)𝑟3𝑑𝑟

1.25

0
                                                  (4) 

 

The extent of the integral means that only the particles with diameter under 2.5μm are considered. 

 

Combining the two equations yields a linear relationship as in equation (5) and then can be 

simplified as in equation (6). 

 

𝑃𝑀2.5 =
𝐴𝑂𝐷

𝐻𝑒𝑓𝑓

4𝜌𝑟𝑒𝑓𝑓

3[𝑄𝑒𝑥𝑡]
                                                        (5) 

 

𝑃𝑀2.5 = 𝛽 +
𝛼𝐴𝑂𝐷

𝑃𝐵𝐿𝐻
                                                         (6) 

 

We added the selected hydrometeorological variables following the method of Yang et al., 2005, 

which can be expressed as in equation (7): 

 

ln(𝑃𝑀2.5) = 𝛽𝐴𝑂𝐷 ln(𝐴𝑂𝐷) + 𝛽𝑃𝐵𝐿𝐻 ln(𝑃𝐵𝐿𝐻) + 𝛽0 + 𝛽1𝑉1 + ⋯ + 𝛽𝑘𝑉𝑘              (7) 

 

where β is the coefficient and V is the selected variable. 

 

4. RESULT 

 

4.1. Posterior Inclusion Probability 

 

Figure 2 shows the result of PIP values in three different land cover types. The black bars imply 

that the variable has positive effect on PM2.5 variation and the white bars imply that the variable 

has negative effect on PM2.5 variation. PIP value closer to 1 means that the variable has 

meaningful impact on PM2.5 variation. The variables that have positive effects were long wave 

radiation and air pressure and the others showed negative effects. However, there were not much 

difference between the land cover types and except specific humidity in crop land and air pressure 

in forest, the PIP values were all 1. This might be due to the temporal coverage of the data, which 

includes 3 years, and therefore the dependent and independent variables have shown yearly 

patterns. PM2.5 concentration in Korea in highest in spring, followed by winter, fall and summer, 
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mainly because of the Asian dust events in spring and occasional smog’s occurring in winter. 

Therefore it makes a convex downward pattern and the hydrometeorological factors that have 

similar convex downward patterns appeared to have positive relationships with PM2.5 

concentration and the factors that have the opposite patterns have shown negative relationships. 

 

Since the total analysis wasn’t able to detect the differences in PIP values in different factors, we 

divided the data into seasons instead of land cover types to remove seasonal effect inherent in the 

dataset. The result is shown in Figure 3. Significantly positive impacts were found in case of 

shortwave radiation and air pressure, which is thought to be related to the formation of secondary 

pollutants in former case. The reason of the positive impact of air pressure is that, it is negatively 

correlated with boundary layer height, which is again negatively correlated with PM2.5 

concentration at the ground level. Significantly negative impacts were found in case of longwave 

radiation, precipitation, soil moisture and wind speed, except soil moisture in winter, which has 

shown positive value of under 0.2, implying that it’s meaningless. Negative relationship of 

longwave radiation was appeared because there was an opposite pattern between shortwave 

radiation and longwave radiation. In case of precipitation and soil moisture, PIP values showed 

dust wash out effect by precipitation and soil moisture’s restraining role of natural dust outbreaks. 

Wind speed’s high PIP values through the whole seasons were thought not to be related with 

natural phenomenon, but with the way measurement of PM2.5 is done: that is, the device measures 

PM2.5 concentration by inhaling ambient air and counting or weighing them, and with higher 

wind speed, there might be less dust deposited, given same pollution level. The PIP values of the 

Figure 2. PIP values of 9 different hydrometeorological variables, in three different land cover types. 

Figure 3. PIP values of 9 different hydrometeorological variables, in four different seasons. 
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other factors differed from season to season, both in magnitude and sign. 

 

4.2. Model Performance 

 

The variables with PIP values larger than 0.6 were selected from the result in section 4.1, by means 

of trial and error. In the process of developing models, these variables were significant with 99% 

confidence level in each model. The developed models were compared with observed PM2.5 

concentration, as shown in Figure 4. Overall, the statistics showed moderate to good performances 

of the models, highest in winter and lowest in spring, which can be attributed to relatively stable 

meteorological condition in winter and the highest variability of PM2.5 concentration in spring 

due to frequent dust events, respectively. The slope values were less than 1 for all seasons, 

resulting in underestimation of PM2.5 concentration in high concentration level and 

overestimation in low concentration level. This is mainly due to very low number of samples in 

very high and very low concentrations, compared to those in the middle. Also, overestimation in 

low concentration level could also be associated to high uncertainties in aerosol product in lower 

level. Figure 5 shows geographical differences in model performances, in winter. The data from 

Figure 4. Scatter plots between modeled, observed PM2.5 concentration in different seasons. 
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all observatories falling in each 5kmⅹ5km grids were collected and combined. the grids without 

even one observatory are leaved empty. The overall spatial pattern of the correlation coefficients 

not much differed season to season. The correlation coefficients ranged from 0.54 to 0.82, coastal 

areas being generally lower than inland. This could be due to the uncertainty of aerosol retrieval 

process in coastal areas, which has been mentioned in previous study (Gupta and Christopher, 

2009). Therefore, the lowest correlation coefficient was found in the island at the bottom of the 

country, where almost every pixel of the data was including coastal area. 

 

4.3. Development of PM2.5 Concentration Maps 

 

We applied developed model to every pixel available from MODIS, GLDAS to produce PM2.5 

concentration maps. Figure 6 shows the concentration maps from 12 to 21, march, 2015. The 

upper maps are developed by using models and the bottom ones illustrate ground-based 

interpolated maps, by means of nearest-neighbor, which is the method being used in Korea to 

provide PM2.5 information to people living in rural areas. There were two Asian dust events in 

this period, from 14 to 16 and 21. In the middle of the two events, there was rainfall over the 

country. We could observe that they look very similar in overall colors and temporal variation, 

increasing with dust event and decreasing significantly by precipitation, indicating the developed 

model can capture increasing or decreasing temporal trends. Furthermore, the modeled maps have 

Figure 5. Geographical differences in model performances with correlation coefficient, in winter. 
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shown ability to better visualize spatial variation. Still, the range of the concentration was 

relatively small, centered around middle level of the concentration. 

 

5. CONCLUSION 

 

BMA showed its powerful ability to assess each hydrometeorological variable’s impact on 

PM2.5 concentration variation. The results included not only well-known roles of 

hydrometeorological variables such as precipitation’s dust wash out effect and solar radiation’s 

acceleration on formation of the secondary pollutants, but also new insights that there’re also 

roles of  air pressure and wind speed. Further classifications using topography, location or 

elevation might yield somewhat new, or different results that can help deeply understand 

hydrometeorological influences on air pollution. 

 

Although there were some erroneous estimations from the developed model, mainly due to high 

variability and skewed distribution of PM2.5 concentration level, the models correlated quite 

reasonable to the observed values (R ~ 0.82). The developed concentration maps also showed its 

possibility to be used as a proxy of interpolated concentration information, to those who are living 

in areas without observatories. Still, their limitation such as under/overestimation should be 

carefully dealt with on further study by, for example, setting different kinds of thresholds on 

concentration level or hydrometeorological factors. 
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