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ABSTRACT: Gaofen-5 (GF-5) is a newly launched satellite with 6 types of payloads, one of which is the 

Advanced Hyperspectral Imager (AHSI), a hyperspectral VNIR sensor with spectral range from 0.4μm-2.5μm and 

its spectral resolution is 5nm. As most sensors, its data suffers from the contamination of clouds. In thick cloud 

regions on particular days, the data are not accessible in particular thick cloud regions, which hinders its wider 

applications. Here we propose a thick cloud removal method of GF-5 hyperspectral VNIR data with the aid of 

corresponding cloud-free multispectral data via residual neural networks (ResNet). The basic idea is to build 

nonlinear mapping between hyperspectral data and multispectral data via residual neural networks and use the 

mapping to restore the cloud-contaminated data. First the clouds in the scene are detected and set as cloud regions, 

and then the residual neural networks are trained with cloud-free regions of hyperspectral data and multispectral data. 

Finally, the cloud regions are calculated using corresponding cloud-free multispectral data to derive the cloud 

removed hyperspectral data. The method is tested with simulated data derived from GF-5 and yields accurate results. 

 

1. INTRODUCTION 

Remote sensing are, nowadays, used widely in different applications such as forestry, agriculture, geology and etc. 

Prior to all these applications, the first step of all these applications is to obtain remote sensing data. However, due 

to bad weather conditions, the remote sensing data usually suffers from cloud contamination. This greatly hinders the 

remote sensing applications, especially when the scene is contaminated by thick clouds in the visual and near-infrared 

range(Lin, et al., 2013), which means the clouded area has no information contained. Although the smaller revisiting 

time makes it possible to obtain many data in one certain region, there are still gaps between available data, bringing 

difficulties to applications such as long-term monitoring. 

 

Gaofen-5 (GF-5) satellite is the only terrestrial environment hyperspectral observation satellite in China's high-

resolution geospatial major science and technology special plan, and the world's first atmospheric and terrestrial 

integrated hyperspectral observation satellite. It is a newly launched in 2018 and is equipped with 6 payloads covering 

ultraviolet to long-wave infrared, including the Advanced Hyperspectral Imager (AHSI), Visual and Infrared 

Multispectral Sensor (VIMS), Greenhouse-gases Monitoring Instrument (GMI), Atmospheric Infrared Ultraspectral 

(AIUS), Environment Monitoring Instrument (EMI), Directional Polarization Camera (DPC). Among these 

equipment, AHSI is the first hyperspectral data with both wide swath and wide spectral range of 0.4μm-2.5μm and 

The 40th Asian Conference on Remote Sensing (ACRS 2019) 
October 14-18, 2019 / Daejeon Convention Center(DCC), Daejeon, Korea ThE3-2

1

mailto:pengmy@radi.ac.cn
mailto:zhanglf@radi.ac.cn
mailto:sunxj@radi.ac.cn


its spectral resolution is 5nm. As GF-5 fight height is 705 km, it also suffers from the contamination of clouds, which 

brings obstacles to its wide applications. 

 

One solution to this problem is cloud removal of the remote sensing data. To date, there are many researches on cloud 

removal of remote sensing images, and they can be divided into three categories(Cheng, et al., 2014). One is the non-

complementation approaches, which is to reconstruct the cloud-contaminated area using the remaining parts of the 

images without the aid of other scenes(Chen, et al., 2005, Lorenzi, et al., 2011, Maalouf, et al., 2009). The missing 

data are synthesized by propagating the geological structure in the region. Although this method can obtain a 

relatively good visual result, the accuracy of this method is questionable and hinders its quantitative applications 

especially when it comes to hyperspectral data. Other category is the complementation approaches, which is to utilize 

the clean and complete auxiliary band of data to restore the cloud contaminated data (Li, et al., 2012, Rakwatin, et 

al., 2009, Travis, 2009). This is usually done by modelling the relationship between the cloud contaminated data and 

the auxiliary band of data. This method can obtain a relatively better result than the first method, yet it highly depends 

on the spectral compatibility(Lin, et al., 2013), and more applicable to remove haze or thin clouds. Another category 

is the multi-temporal approaches, which is to use the overlapped data from other time to restore the missing data 

(Gabarda and Cristóbal, 2007, Jiao, et al., 2007, Melgani, 2006, Zeng, et al., 2013). The third approach tends to yield 

most accurate results, but when the temporal gap is too large or the atmospheric conditions are quite different, the 

results may suffer from spectral differences. Also, there are few researches on cloud removal of hyperspectral data, 

most of which focus mainly on preserving the spectral information, ignoring maintaining the spatial information. 

 

To overcome the problems mentioned above, here we propose the method of cloud removal of GF-5 hyperspectral 

data using the residual neural networks. First, the cloud area of GF-5 hyperspectral data are detected and a cloud 

mask result is yielded. Then, the cloud mask is applied on the hyperspectral data and multispectral data to obtain data 

of the overlapped cloud-free area, and nonlinear mapping is modeled and trained via residual neural networks. And 

last, the clouded area of hyperspectral data are predicted based on the relationship and auxiliary multispectral data. 

The method is able to remove thick clouds in a relatively large area and yields excellent results in both preserving 

spectral and spatial results. 

 

 

2. PROPOSED METHOD 

2.1 Basic Hypothesis of the Proposed Method 

The basic hypothesis of the proposed method is that the mappings between hyperspectral data and multispectral data 

of the same scene is nonlinear and transferable to cloud-contaminated area when land covers would not change during 

a short period of time. On top of that, we can model the relationship between the cloud-free areas of GF-5 

hyperspectral data and the auxiliary clean multispectral data on nearby date, and utilize the relationship to predict the 

cloud-contaminated area. Here we represent the Gf-5 hyperspectral data as H, the cloud-contaminated and cloud-free 

area of which is H𝑐 and H𝑓. We also note the auxiliary multispectral data as M, the overlapped area with H as M𝑜. 

Modelling the relationship between them can be represented as 

H𝑓 = F(M𝑜) 

 

And according to the hypothesis that land cover types is invariable, we can get 

H = F(M) 

 

They share the same relationship F(·).As hyperspectral data is huge in volume and tends to have redundancy between 

bands, here we perform principle components to reduce the dimension. Thus, modelling the relationship between 
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dimensionally reduced hyperspectral data H′ and the auxiliary multispectral data M becomes getting function G by 

solving 

H𝑓′ = G(M𝑜) → H′ = G(M) 

where H𝑓′ represents the principal components of the cloud-free area of the hyperspectral data. 

 

2.2 The Structure of Cloud Removal Model 

For learning the relationship F, here we use the technique of residual neural network. Research shows that the residual 

learning is easier to optimize compared to plain CNN networks. Rather than learning the nonlinear mapping of H(x), 

which can be represented in a form of F(x)+x, residual learning learns its residual F(x). The mapping can be 

represented as 

y =  ℱ(x, {𝑊𝑖}) + 𝑊𝑠x 

in which x represents the input of a certain layer, y represents the output of this layer. The residual learning can be 

realized by the structure of “short connections”, which are those skipping some layers (Bishop, 1995, He, et al., 2016). 

Short connections are the outputs of identity mapping added to outputs of the stacked layers as shown in the Figure 

1. The residual learning is a useful preconditioning to identity mapping. If the optimal function is close to an identity 

mapping, it should be easier to learn the perturbations from identity mapping than to learn the optimal function in a 

new one(He, et al., 2016), thus it’s easier to optimize than plain networks. In our case, the residual block is piled with 

convolutional layers, batch normalization layers and leaky ReLU layers. 

 

The following figure shows the structure of the model which is piled with loads of residual blocks. The input data is 

the multispectral data and the output data is the principle components of the GF-5 hyperspectral data. For the inputs 

and outputs of the model, we divide the data into small patches, each patches overlap by half to diminish the distortion 

on the edge of each patches during restoration. 

 

 

Figure 1. The structure of residual block and the model 

 

 

2.3 Main Process of Cloud Removal of GF-5 VNIR Hyperspectral Data 

The main process of the cloud removal of GF-5 hyperspectral data is shown in the figure below. First the clouded 

hyperspectral data is transformed using principal component analysis, and is used to generate cloud mask. Here we 

use the K-Means method to generate approximate estimation of the cloud mask. Then the cloud mask, PCA 

transformed hyperspectral data and multispectral data are used to generate the training patch pairs. Here the 
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hyperspectral data and auxiliary multispectral data are divided into small patches as training patches. The patch is 

discarded if there exist any cloud in the patch. After obtaining training patches, the ResNet model is trained to get the 

nonlinear mapping F(·) between GF-5 hyperspectral data and the auxiliary multispectral data. Finally the cloud area 

was predicted and restored using the trained models. 

 

  
Figure 2. Flowchart of the method 

 

3 EXPERIMENTS AND RESULTS 

3.3 Test Dataset 

The test scene of GF-5 hyperspectral data was obtained in Germany, on May 29th, 2018. It possesses 1024 pixels in 

lines and 768 pixels in columns with 180 bands ranging from 390.12 nm to 1028.98 nm. The test scene is mainly 

covered by crop fields. The data was processed with QUick atmospheric correction and noise reduction using 

principal component analysis by ENVI 5.2. Then the test data was added clouds which was derived from other scenes 

of GF-5 hyperspectral data and cloud cover is approximately 0.249. Figure 3 and Figure 4 show the RGB composites 

of the original and synthetic hyperspectral data and Figure 5 shows several spectra of the added cloud.  
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Figure 3. Original GF-5 hyperspectral data   Figure 4.Sythesized GF-5 data with cloud 

 
Figure 5. Cloud spectra of the test data 

 

The auxiliary multispectral data is the Sentinel-2a multispectral data obtained on May 28th, 2018. We chose the 7 

bands of the data with spatial resolution of 20m ranging from 492.1nm to 864.0nm. Also, the auxiliary data was 

possessed with QUick atmospheric correction by ENVI 5.2. 

 

 

3.4 Experimental Settings 

The whole process was processed by Keras 2.0 in python. The number of residual blocks of the ResNet structure was 

set as 10. The patch size was set to be 8×8 pixels per patch. The training epoch was set to be 1000. The optimizer 

was set to be the Adam and the learning rate was set to be 0.001. We also used the strategy of early stopping to end 

the training process when training loss does not further reduce. This can avoid the overfitting of the ResNet model.  

 

3.5 Results 

To evaluate the effectiveness of this method, the result was assessed by visual interpretation and quantitative 

assessments. The figure below shows the overall and detail scene of RGB composites of the cloud removal result in 

the cloud-blocked scenes. We can see from the result that the clouds have been completely removed, and the spatial 

details of the data is well preserved. Also, we collected spectra of the cloud blocked area from original scene and the 

restored scene and they are shown in the figure below. The similarity of the corresponding spectra shows the ability 

of this method to restore the spectral information of the blocked area. 
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(a) 

    

(b)                    (c)                   (d)                  (e) 

Figure 6. Cloud removed results in spatial domain (RGB composites) 

(a. Whole scene of the restored area  b. original data  c. restored data 

d. original data  e. restored data) 

 

(a)                                        (b) 
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(c)                                        (d) 

Figure 7. Spectra of typical land covers of original and cloud-removed data 

 

For the quantitative assessment we used the quality indices of PSNR, CC, RMSE and SAM to evaluate the results 

with the original GF-5 hyperspectral data. The restored data was calculated with the original data in the whole scene. 

The following figure shows the indices before and after the cloud removal procedures. As we can see in the figure, 

SAM decreases from 7.09 to 1.93, which shows the spectral feature was restored and close to the original 

hyperspectral data. PSNR increases from 19.39 to 37.11, RMSE decreases from 1595.1 to 267.62, CC increases from 

0.356 to 0.965 which shows the restoration accuracy has been increased.  

 

 

Figure 8. Quantitative assessment of clouded and cloud-removed data 

 

 

4 CONCLUSIONS 

Here a method for cloud removal of GF-5 hyperspectral data using residual neural networks with aid of the auxiliary 

multispectral data is proposed. The method is to build the nonlinear mapping using ResNet between the principle 

components of GF-5 hyperspectral data and the auxiliary multispectral data, and use the mapping to predict the data 

from cloud-contaminated area. The method is tested through synthetic clouded GF-5 hyperspectral data and Sentinel-

2 multispectral data. Results show that this method can accurately restore the hyperspectral data of the cloud-

contaminated area even when the data is blocked by thick clouds, and the method can also improve the quality of the 

cloud-contaminated data in both spectral and spatial information. 
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