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Abstract

Over the years, airborne LiDAR has demonstrated its merits over traditional aerial pho-
togrammetry and remote sensing for fine scale mapping due to its elimination of shadowing
and relief displacement effects. In spite of that, conventional monochromatic LiDAR system
(i.e. single wavelength) has a limited analytical capability since it has a lack of fruitful spec-
tral information. Until very recently, the world’s first multispectral airborne LiDAR system
manufactured by Teledyne Optech, i.e. Optech Titan, represents a significant breakthrough
in LiDAR remote sensing. The multispectral LiDAR system is capable of collecting high
resolution dense 3D point cloud with three laser channels (i.e. 532 nm, 1064 nm and 1550
nm). Such an enhanced capability can facilitate the use of these multi-wavelength laser
intensity data for retrieving land surface properties and improving Earth’s knowledge dis-
covery. Since LiDAR intensity data unavoidably suffers different levels of noise due to the
varying system and environmental conditions, LiDAR intensity data should undergo certain
radiometric pre-process prior to any analysis. This paper presents a comprehensive solution,
including 1) a LiDAR Scan Line Correction (LSLC) to remove the intensity banding effect
found in individual LiDAR data strip, and 2) a radiometric correction model to reduce the
system- and environmental induced distortions between overlapping data strips, to facilitate
multispectral LiDAR data classification. With the improved radiometric quality, the inten-
sity homogeneity was enhanced significantly by 0.2% to 52.5%, depending on the land cover
classes. By using multispectral airborne LiDAR intensity data for classification, additional
laser channels yielded an improvement of overall accuracy by 13% to 21%, comparing to
monochromatic LiDAR intensity data classification in most of the scenarios. This work pro-
vides, the first of its kind, a practical and universal solution for radiometric pre-processing
the multispectral airborne LiDAR data to support enhanced data analysis.

1. Introduction

Monochromatic (i.e. single wavelength) airborne LiDAR system has been widely used for
various topographic applications due to its capability of collecting dense 3D point cloud (Yan
et al., 2015). Most of the existing applications reap the benefits of the collected data’s 3D
geometry, such as ground filtering (Vosselman, 2000), 3D building extraction (Zhang et al.,
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2006), and tree canopy modeling (Kato et al., 2009), which are hard to be achieved using
traditional remote sensing images. To compensate the lack of multispectral information,
airborne LiDAR can be fused with aerial photos or high resolution satellite images to support
thematic analysis. Nevertheless, the associated problems, including geometric misalignment
between the point cloud and image data, appearance of shadowing and effects of tilted
objects, all potentially degrade the data quality and analytical accuracy. Therefore, the
need of having a LiDAR system that is capable of collecting multi-wavelength laser intensity
data has been sought and scientifically justified.

Recently, Teledyne Optech has announced the world’s first multispectral airborne LiDAR
system, named Optech Titan, which is capable of collecting the backscattered laser signal
strength with wavelengths of 532 nm (green), 1064 nm (near-infrared, NIR), and 1550 nm
(infrared, IR), see Fig. 1a. Such a ground breaking development further facilitates scientists
and surveyors to improve the capability of Earth surface’s analysis, and opens many new
doors for various urban and environmental applications. Figs. 1b and 1c show an example
of the collected multispectral LiDAR intensity data and the aerial photo. One can easily
observe that the effects of shadowing dominate nearby the tree canopies and houses on the
aerial photo. Also, the adjacent regions located nearby the titled objects are occluded. All
these drawbacks are overcome on the multispectral airborne LiDAR intensity data due to
the direct geo-referencing technique.

(a) (b) (c)

Figure 1: (a) Optech Titan, (b) Multispectral airborne LiDAR intensity data, and (c) Aerial photo.

With the invention of multispectral airborne LiDAR intensity data, it is foreseeable that
traditional thematic mapping capability can further excel, particularly in fine scale, large-
area land cover mapping. The current version of global land cover map, GlobeLand30, was
generated using Landsat satellite images with 30-m resolution (Chen et al., 2015). Satellite
remote sensing techniques are no longer capable of generating the next generation global land
cover map with foreseeable spatial resolution down to 1 - 5 m. As a result, multispectral
airborne LiDAR deems to be a viable alternative to fulfill such a goal. In spite of that,
the intensity data noise, i.e. the stripe artifacts appeared in individual LiDAR data strip
and overlapping LiDAR data strips, degrade the data quality. Currently, there is a lack of
universal solution to remove these striping noises. In this paper, a comprehensive solution of
improving the radiometric quality of multispectral airborne LiDAR intensity data, including
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a LiDAR scan line correction and an overlap-driven intensity correction, is proposed so as
to maximize the benefits of using the LiDAR intensity data for land cover classification.

2. Radiometric Correction

2.1. LiDAR Scan Line Correction

The LiDAR scan line correction (LSLC), which is previously proposed by the author
(Yan and Shaker, 2018), was acquired to reduce the striping noise found in the individual
LiDAR data strip. The cause of the striping noise can be ascribed by the intensity banding
effect, which is mainly due to the backscattered laser signal partially falling outside the
receiver’s field of view in a particular scanning direction. The recorded laser signal strength
is attenuated in this specific scanning direction, resulting in a striping noise pattern found
in the LiDAR intensity data. The mechanism of the LSLC is described in the Fig. 2.
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Figure 2: Overall workflow of LiDAR scan line correction for striping noise removal.

Assume LiDAR dataset L having the intensity banding, the process is described as below:

1. The LSLC starts with splitting the dataset L into L0 and L1, which represent the data
with scan flag 0 and 1, respectively.

2. The subset serves as a reference set if its mean intensity is higher than the other one.
3. The data points from L1 (assuming it to be the reference set) should be matched with

data points from L0 through a kd-tree search, resulting in a n number of paired points.
4. A high order polynomial model (e.g. 3rd order) is constructed with parameters (i.e. a

to j) including intensity I and scan angle θ. The matrix form is listed as below:
I1,1
I1,2

...
I1,n

 =


I30,1 θ30,1 I20,1 θ0,1 I0,1 θ

2
0,1 I20,1 θ20,1 I0,1 θ0,1 I0,1 θ0,1 1

I30,2 θ30,2 I20,2 θ0,2 I0,2 θ
2
0,2 I20,2 θ20,2 I0,2 θ0,2 I0,2 θ0,2 1

...
...

...
...

...
...

...
...

...
...

I30,n θ30,n I20,n θ0,n I0,n θ
2
0,n I20,n θ20,n I0,n θ0,n I0,n θ0,n 1

 ·

a
b
...
j

 (1)

5. By using iteratively re-weighted least-squares together with M-estimator, the above
equation can be solved, resulting in the correction parameters a to j.

6. Finally, the subset L0 is combined with L1 after the intensity values of L0 is corrected
using the parameters. The scan line corrected L should be free from the striping noise.
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2.2. Overlap-driven Intensity Correction

Although the LSLC can significantly remove the striping noise in individual LiDAR data
strip, a notable level of striping noise can be observed at the swath edge when combin-
ing multiple overlapping LiDAR data strips due to the system- and environmental-induced
distortions. As a result, an overlap-driven intensity correction is proposed with an enhance-
ment to the author’s previous models (Yan and Shaker, 2014, 2016) and (Ding et al., 2013).
Recalling the radar (range) equation that is commonly used for radiometric correction of
LiDAR intensity data:

Pr =
PtD

2

4πR2
· 4πρAcosθ

4πR2
· ηsys · ηatm (2)

where Pr is the recorded laser power, Pt is the transmitted laser power, D is the aperture
diameter, R is the range, ρ is the surface reflectance, A is the laser footprint (which is depen-
dent on R), θ is the incidence angle, ηsys is the system transmission factor, and ηatm = e−2cR

is the atmospheric attenuation factor (Yan and Shaker, 2014). Pr is commonly regarded as
the intensity data I after linearization and ρ is the desired (corrected) intensity data. Since
most of the parameters, including the Pt, D, ηsys, are constant , the above Eq. 2 becomes

ρ = I ·
[ R
Rm

]2
· 1

cosθ
· e2cR (3)

where Rm is a constant and is usually regarded as the minimum range value. The above
equation adopts the Lambertian reflectance mechanism, where a number of studies have
reported its limitations in LiDAR intensity correction (Carrea et al., 2016; Tan et al., 2016).
To overcome such a drawback, a higher degree of correction can be applied toward the range
and angle:

ρ = I ·
[ R
Rm

]a
·
[ 1

cosθ

]b
· e2cR (4)

Assume there exist two LiDAR data strips (Li and Lj) that are partially overlapped,
data points from the two LiDAR data strips are matched by searching closest distance based
on building a kd-tree, resulting in a total n number of paired points. Assume the paired
points located on the identical surfaces, as a result the ρ of the two data points should be
identical. Substituting the two data strips into Eq. 4 and dividing them becomes:

Ii
Ij

=
[Rj

Ri

]a
·
[ cosi
cosj

]b
· e2(Rj−Ri)c (5)

Though applying logarithm on both sides of equation, Eq. 5 can be linearized. The matrix
form of the equation would be:

ln
[Rj,1

Ri,1

]
ln
[ cosθi,1
cosθj,1

]
2(Rj,1 −Ri,1)

ln
[Rj,2

Ri,2

]
ln
[ cosθi,2
cosθj,2

]
2(Rj,2 −Ri,2)

...

ln
[Rj,n

Ri,n

]
ln
[ cosθi,n
cosθj,n

]
2(Rj,n −Ri,n)

 ·
ab
c

 =


ln
[ Ii,1
Ij,1

]
ln
[ Ii,2
Ij,2

]
...

ln
[ Ii,n
Ij,n

]

 (6)
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Similar to the LSLC, the above linearized equation can be solved using iteratively re-
weighted least squares together with M-estimation. The solved parameters (a, b and c) can
be re-applied to Eq. 4 for both Li and Lj in order to retrieve the ρ, which is treated as the
corrected intensity data. After implementing the overlap-driven intensity correction, the
striping noise found in the swath edge should be significantly reduced after combining the
corrected Li and Lj.

3. Experimental Work

3.1. Multispectral Airborne LiDAR Data

Four multispectral LiDAR data subsets collected by Optech Titan were used to demon-
strate the effects of the proposed radiometric correction and the subsequent land cover
classification. The datasets were collected on different land cover scenarios, where all of
them were located in Ontario, Canada. The pulse repetition frequency (PRF) were set to
be 600 kHz for the three laser channels, i.e. channel 1 (1550 nm), channel 2 (1064 nm) and
channel 3 (532 nm), with scan frequency of 40 Hz and flying height ranging from 400 m to
1 km. With these settings, the mean point density yielded higher than 10 to 15 points/m2,
resulting in a mean point spacing better than 0.5 m. The multispectral LiDAR datasets
cover both rural and sub-urban areas.

3.2. Assessment of Intensity Homogeneity

To examine the effects of radiometric correction, the intensity homogeneity was assessed
on the multispectral LiDAR intensity data before and after implementing the correction. The
coefficient of variation (cv) was acquired to quantitatively measure the intensity homogeneity.
Within each of the studied land covers, the cv can be derived as

cv =
σi
µi
, ∀ i ⊆ L (7)

where σi represents the standard deviation of a set of LiDAR data points i within a certain
land cover, and µi represents the mean of a set of LiDAR data points i within a certain land
cover. A reduction of cv after radiometric correction implies an improvement of intensity
homogeneity, which also indicates a successful removal or reduction of striping noise.

3.3. Land Cover Classification

Finally, one of the multispectral airborne LiDAR datasets was used to perform land
cover classification. Training data of five land cover classes, including water bodies, grass
cover, tree canopies, houses and paved ground, were collected on the LiDAR data. They
were used to train a multivariate Gaussian classifier with different combinations of feature
sets, including the intensity and elevation of the three laser channels. Once the classification
results based on different feature sets were generated, accuracy assessment was conducted
based on the random check points generated on the reference aerial photos. The overall
accuracy was computed based on the derived confusion matrix. The overall aim of this task
is to demonstrate the effects of additional laser channels toward the classification.
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4. Results and Analysis

4.1. Effects of Radiometric Correction

Fig. 3 shows the multispectral airborne LiDAR intensity data before and after implement-
ing the radiometric correction. It shows five land cover classes, including harvest farmland,
grassland, paved road, tree canopy, and wetland. One can obviously note that a significant
striping noise appeared on the multispectral airborne LiDAR intensity data (see Figs. 3a
to 3d). This can be explained by the intensity data collected for scan flag 1 (i.e. a positive
scan direction which is a scan moving from the left side of the in-track direction to the right
side and negative the opposite) suffered from significant energy loss. Such intensity banding
effect only occurred in the channel 1 (1550 nm) and channel 2 (1064 nm). As shown in Figs.
3e to 3h, the proposed correction successfully provided a robust matching of the intensity
data bin of scan flag 1 with respect to the scan flag 0, leading to a significant striping noise
removal in the resulted intensity images.

(e) (f) (g) (h)

(a) (b) (c) (d)

0 30m0 30m 0 30m0 30m

Figure 3: (a) to (d) Multispectral airborne LiDAR intensity data, and (e) to (h) corrected intensity data.

Table 1 shows the computed cv of e channels 1 and 2 on the original intensity data
and the corrected intensity data. Since channel 1 did not have significant striping noise,
therefore, the cv reduction was mild among the three land cover classes. Both vegetation
features (i.e. grass cover and tree canopies) were recorded with a cv reduction by less than
1% in channel 1, while the farmland and wetland were recorded with a cv reduction by 6%.
Since the absolute cv value was low on the paved road, the cv on the original intensity was
0.167 and it decreased to 0.148 after implementing the correction, resulting in a drop of cv
by 11.5% . In channel 2, since the intensity banding effect was obvious, a notable reduction
of cv can be found after running the correction. Similar to channel 1, the tree canopies

6

6



were recorded with the less cv reduction, which was only 6.2%. The cv of the grass cover
was decreased from 0.397 to 0.323 (↓ 18.6%) after applying the correction . A significant
reduction of cv was observed in the rest of the three land cover classes, where the cv of
farmland, wetland and paved road was reduced from 0.285 to 0.184 (↓ 35.5%), 0.239 to
0.141 (↓ 40.9%), and 0.242 to 0.115 (↓ 52.5%), respectively.

Table 1: A summary of cv of five land cover classes before and after applying radiometric correction.

Channel 1
(Original Intensity)

Channel 1
(After Correction)

Channel 2
(Original Intensity)

Channel 2
(After Correction)

Farm 0.273 0.258 (↓ 5.5%) 0.285 0.184 (↓ 35.5%)
Grass 0.374 0.373 (↓ 0.2%) 0.397 0.323 (↓ 18.6%)
Road 0.167 0.148 (↓ 11.5%) 0.242 0.115 (↓ 52.5%)
Tree 0.629 0.626 (↓ 0.6%) 0.642 0.602 (↓ 6.2%)

Wetland 0.212 0.200 (↓ 5.7%) 0.239 0.141 (↓ 40.9%)

4.2. Multispectral LiDAR Data Classification

The multispectral LiDAR intensity data was further used to explore land cover classifica-
tion. In the author’s previous experiments as reported in Shaker et al. (2019), incorporation
of additional laser channels did not significantly improve the land-water classification, since
these two classes (i.e. land and water) already had significant separability based on the eleva-
tion. However, in this experiment, the land cover classification scenario was further broken
down into five land cover classes, including grassland, house, paved land, tree canopies and
water bodies. As shown in Fig. 4, individual laser intensity data, regardless of channel 1,
2 or 3, does not seem to provide a good separability among the five classes. Nevertheless,
combining the three laser channels obviously provides an ideal feature space to delineate
these five classes (see the middle three sub-figures in Fig. 4).

C1
(1550 nm)

40960

C123 3-Channel

Grass

C2
(1064 nm)

C3
(532 nm)

C213 C321

0 400m
WaterLandHouse Tree

2-Channel1-Channel

Band Combination

Figure 4: Individual LiDAR intensity data, multispectral LiDAR intensity data displayed with different
band combinations and land cover classification results using different combinations of laser channels.
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Table 2 shows the overall accuracy of land cover classification using different combinations
of laser channels. It is obvious that the use additional laser channels together with the
elevation can yield a high classification accuracy. Without incorporating the elevation, an
overall accuracy ranging from 30% to 37% was achieved purely based on the individual
LiDAR intensity data. By using two laser channels, the overall accuracy was increased to
44% to 45%, and it finally reached to 51% when all the three LiDAR intensity data were used
as feature sets for the five-class classification. The merit of airborne LiDAR data over remote
sensing image for classification can be attributed to the LiDAR-derived height features. With
incorporation of LiDAR elevation, the overall accuracy of single-channel classification ranged
from 72% to 81%, resulting in an over 40% improvement to those without using elevation.
Combing two laser channels together with the elevation, the overall accuracy yielded more
than 83%. An overall accuracy of 85% was achieved when the three laser channels were
used. The sub-figures in the right hand side of Fig. 4 show the classification results using
one to three laser channels. Fig. 5 shows the 3D classification result using the three laser
channels together with the elevation feature.

Table 2: Accuracy assessment of multispectral LiDAR data classification.

Feature Set Without Elevation With Elevation
Channel 1 (1550 nm) 30.28% 71.51%
Channel 2 (1064 nm) 33.59% 75.54%
Channel 3 (532 nm) 36.64% 80.66%
Channels 1 + 2 44.78% 83.21%
Channels 1 + 3 43.51% 80.66%
Channels 2 + 3 45.29% 83.21%
Channels 1 + 2 + 3 50.89% 84.73%

(a)

(b)

0 300m
Grass WaterLandHouse Tree

Figure 5: (a) Multispectral LiDAR intensity data, and (b) land cover classification result using tri-channels.

Based on the experimental testing, an improvement of classification accuracy ranged from
13% to 21% was recorded in the scenario with or without using the elevation feature. Since
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the multispectral airborne LiDAR dataset was collected with high PRF, the point density
yielded more than 10 points/m2 in the testing dataset. As a result, undesired tiny objects
(such as vehicles, road markings, powerlines, etc.) appeared in the study scene causing
spectral mixture among the land cover classes. These undesired objects were the main cause
of the mis-classification, even though multispectral LiDAR intensity data from all three
channels were used. Since the experimental testing only aimed to assess the performance of
using multispectral LiDAR intensity data for land cover classification, different combinations
of LiDAR intensity data together with the elevation were examined. Other new feature sets,
such as surface normal, texture measures, intensity/height variation, or normalized difference
feature index, can be generated in order to further improve the classification accuracy, which
can yield better than 90% (Shaker et al., 2019).

5. Conclusions

To embrace the next generation global land cover mapping, it is believed that satellite
remote sensing images are no longer able to generate reliable results due to the presence
of shadowing and tilted object effects. As a result, the latest invention of multispectral
airborne LiDAR system can certainly overcome these drawbacks and generates a fine-scale,
large-area land cover map. Due to the presence of striping noises found in individual LiDAR
data strip and overlapping LiDAR data strips, multispectral LiDAR intensity data should
undergo certain pre-processing in order improve the radiometric quality. Since there is a
lack of practical solution in existing literature, this work proposes a dual-correction approach
to remove the striping noises. The LiDAR scan line correction is proposed to adjust the
radiometric misalignment between the two scan lines due to the intensity banding effect.
An overlap-driven intensity correction is developed to adjust the system and environmental
induced distortions. Based on the experimental testing, the intensity homogeneity was mea-
sured on five different land cover classes on the intensity data before and after implementing
the correction, where a significant enhancement of data quality was achieved by removing
these stripe artifacts. A reduction of cv was obvious on ground features (i.e. farmland,
grassland, wetland and paved road) ranging from 0.2% to 11.5% in channel 1 (1550 nm)
and 18.6% to 52.5% in channel 2 (1064 nm). The intensity homogeneity of tree canopies
only recorded a reduction of cv by 0.6% and 6.2% in these two channels, respectively. The
multispectral airborne LiDAR intensity data was explored with different classification sce-
narios. Comparing to only using a single laser channel, the use of tri-laser channels achieved
an improvement of classification accuracy by 13% to 21%, regardless of using the elevation
feature or not. To the best of the knowledge, this work is the first of its kind that provides
a practical and universal solution to remove the striping noise found on the monochromatic
and multispectral airborne LiDAR intensity data, where such process should be treated as
an essential step prior to using the LiDAR intensity data for any thematic analysis.
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