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ABSTRACT: Skipjack Tuna fishing ground area was studied using satellite remotely sensed 
environment and catch data. Skipjack Tuna tend to aggregate in ocean areas that exhibit specific 
environmental conditions with water quality parameters such as Sea Surface Temperature (SST) 
and dissolved oxygen. Weekly resolved remotely sensed SST, surface chlorophyll (Chl-a), and 
Sea Surface Height (SSH) in 2017 being used as the environmental parameters to determine 
Skipjack tuna fishing ground. Machine Learning method which is Decision Tree (DT) were 
constructed with the environmental parameters as model covariates to examine Skipjack Tuna 
fishing ground determination. As a comparison, Generalized Linear Model (GLM) also was 
applied. This study exhibits the ability of both model performances for the fishing ground 
determination. Both models appear to be appropriate for fishing ground determination, while the 
DT acquires a better performance than GLM. The mean accuracy and Area Under Curve (AUC) 
of DT was about 0.876 and 0.877, respectively. In other hand, GLM only able to acquire 0.6907 
and 0.8397 for its mean accuracy and AUC, respectively. 

 

1. INTRODUCTION 

 

Skipjack tuna (Katsuwonus pelamis) is a highly migratory pelagic species inhabiting all tropical 

and subtropical waters of the world’s oceans (Matsumoto, 1975). It is commercially valuable 

and exploited by many coastal countries along the Indian and the Pacific Oceans (Fonteneau et 

al, 2013). The species is commercially important, ranked among the first 10 species that have 

contributed highly to global catches in previous years (FAO, 2009). Skipjack tuna fish inhabits 

the upper layers of the ocean, spread into the water column above the thermocline, particularly 

below 100 m of the water column, rarely penetrating the thermocline layer. Even though they 

have a wide horizontal migration movement, it vertical movement were restricted caused by its 

limitation with several environmental parameter qualities. The recent studies concluded that Sea 

Surface Temperature (SST) and surface chlorophyll-a (Chl-a) are the most two important habitat 

predictors for skipjack tuna migration (Mugo et al, 2010). SST plays an important role in tuna 

physiology, and temperature variations are often linked with the biological richness of an 

oceanic area (Bertrand et al, 2002).  In the oceanic environment, Chl-a is often considered as an 

index of biological productivity and it could be related to fish production (Gower, 1972).  A 

Combination of the SST and Chl-a can complement one another for determining potential fishing 

ground for tuna (Zainuddin et al, 2004).  

 

Sustainable and effective method required for an effective monitoring and management of marine 

resources. Conventional approaches of sampling the ocean using research vessels are limited in 

both time and space scales of coverage, making it difficult to study entire ecosystems. Since the 
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advent of satellite remote sensing, especially remote sensing of ocean color and temperature, it 

has become possible to sample the global ocean over large areas and with acceptable temporal 

resolutions (Klemas, 2012). Satellite remote sensing has been an important technique in fishery 

research, management and harvesting, because it provides synoptic ocean measurements for 

evaluating environmental influences on the abundance and distribution of fish populations and 

allows ecological analyses at community and ecosystem scales (Chassot et al., 2011; Stuart et al., 

2011). There were many practical fisheries-related application of environmental remotely sensed 

data for efficient management and controlled exploitation of marine resources. In the previous 

study about the remote sensing data application in marine resources monitoring discussed by 

(Mugo et al., 2010), he provided two case. One case was about the application of remote sensing 

environmental data and vessel monitoring technology in a skipjack tuna fishery in the western 

North Pacific by including a simple algorithm, for determining fishing activity from vessel speed. 

For another case, by using the remote sensing data they focus on the impact of climate change on 

scallop (Mizuhopecten yessoensis) aquaculture in Funka Bay, Hokkaido, Japan. Valavanis et al., 

(2008) modelled fish habitat using fishery and environmental remote sensing dataset to 

demonstrate that the identification of oceanographic features such as Potential Fishing Zone 

(PFZs) is feasible in different oceans basins. Another study by Hartog et al (2011) also considered 

how management decisions based on SRS-derived habitat preferences of southern bluefin and 

yellowfin tuna (Thunnus albacares) could be influenced by ocean warming. These examples 

proved if environmental remote sensing data has been taken from the recent past for the marine 

resources monitoring.   

 

As mentioned previously, Skipjack tuna aggregation was affected by environmental marine 

parameters and by taking it into consideration, this research aims to determinate the fishing 

ground by integrating remote sensing environmental data. Considering their custom to inhabit 

the upper layers of the ocean, Sea Surface Height (SSH) also being taken as one of the parameter 

beside SST and Chl-a. Furthermore, two different method wills be executed to obtain this aim. 

First method is using machine learning, with the environmental parameters as model covariates, 

to examined and finding out which parameter affected skipjack tuna aggregation the most. And 

for the comparison, the Generalized Linear Model (GLM) method will also applied as the second 

method. This study will be executed using all data from the first week of January 2013 and 

expected to exhibits the ability of both model performances for the fishing ground determination. 

 

 

2. MATERIAL AND METHODS 

 

Work on case study was conducted in Southwest part of North Pacific Ocean (30oS -10oN 140-

180oE). 

 

2.1 Skipjack Tuna Fishery Data  

 

Catch points of skipjack tuna from 2013 until 2017 was obtained for pursuing this research, 

however as previously stated, the models performances will be tested solely using data from the 

first week of January 2013. There were 70 catch points of skipjack tuna being recorded during 

this period and being plotted as displayed in Figure 1. 

 

The catch points data consist of latitude and longitude position and fish total catch of the fishing 

vessel. A spatial filter excluded all points positioned out of the boundary (within study area). The 

points then will be processed using kernel density function in ArcMap 10.5 with the intention of 

getting the possible fishing area. The area with high density will be assumed as Fish Area, while 
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the area with less density will be No Fish Area.  

 
Figure 1. Recorded Catch Points of Skipjack Tuna  

(c ESRI Image Copyright) 

 

 
Figure 2. (a) Density Map based on Fish Catch Point; (b) Fish and No Fish Area Probability 

Map 

 

Figure 2 showed the density and fish area probability map based on the catch point. In the fish 

area map, black color area indicating No Fish Area, while the white color indicating the Fish 

Area. 

 

 

2.2 Remotely Sensed Environmental Data 
 

Remotely sensed environmental data used to describe the oceanographic conditions around the 

skipjack tuna fishing grounds were SST, Chl-a and SSH. All SST and Chl-a data were estimated 
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from Aqua/MODIS Standard Mapped Image (SMI) level 3 binary data with daily average 

temporal resolution and 9 km of spatial resolution. The delayed time and merged SSH product 

obtained from Global Ocean Physics Reanalysis provided by Copernicus Marine Environment 

Monitoring Service (http://marine.copernicus.eu/) with daily-mean temporal resolution and 

0.083o x 0.083o spatial resolution. All the data recorded in the same period with the fishery data.  

 

The environmental dataset will be acted as model covariates variables in both prediction methods 

to acquire the most possible fishing ground area. Those environmental data later will be 

resampled to seize them into the same cell size. Figure 3 displayed the environmental remotely 

sensing data at the first week of January 2013. SST value range around 20.5oC until 31.6oC, with 

the temperature near-shore appear to be warmer than off-shore. Similar case also happened to 

Chl-a, with the highest concentration located in the on-shore.  

 

In the Chl-a satellite data (Figure 3c), we can detect several areas with null value appear as white 

color. This instance caused by the inability of satellite sensor to capture the reflected Chl-a value 

because of several circumstances. In sake of model construction, it better to avoid the null value 

to optimizing the model performance. 

 

 
Figure 3. Environmental Remotely Sensed Data (a) SST; (b) SSH; and (c) Chl-A  

(c MODIS Image Copyright 2013 NASA; CMEMS Image Copyright 2013) 

 

 

2.3 Construction of Decision Tree and GLM 

 

As described previously, the catch fish points then used to generate fish map probability which 

consist of Fish Area and No Fish Area. Several points will be located on both Fish and No Fish 

Area. These points will be referred as Fish Class points from now on. The points then will be 

separated in two, one served as training points for model construction sake, while another being 

used as the testing points for checking the model performance. There were 298 and 118 total 

points for training and testing points, respectively. Furthermore, by using the training and testing 

points, the environmental data value also being extracted and stacked. Data filtering was needed 

in this process for convincing the null value already excluded from the both dataset.  

 

In this study, the training model construction using machine learning method will be executed 

using Decision Tree. Decision tree is a data mining technique for solving classification and 

prediction problems. Data mining consists of different methods and algorithms used for 

discovering the knowledge from large data sets (Šebalj et al, 2017). Decision trees are used for 

solving classification, as well as regression problems.  When a decision tree is used for 

classification tasks, it is most commonly referred to as a classification tree, and when it is used 

for regression tasks, it is called a regression tree.  Speaking of the classification problems, the 

learning scheme is presented with a set of classified examples (training set) from which it is 
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expected to learn a way of classifying unseen examples (testing set).  Decision tree has a simple 

hierarchical structure easy to understand, consisted of nodes and leaves.  Each node in the tree 

involves testing a particular attribute and each leaf of the tree denotes a class. Decision tree 

classifies instances by sorting them down the tree from the root to some leaf node, which gives a 

classification that applies to all instances that reach the leaf. The tree complexity is measured by 

one of the following metrics: the total number of nodes, total number of leaves, tree depth and 

number of attributes used (Hssina et al, 2014; Rokach & Maimon, 2014; Witten et al, 2011). The 

goal of the decision tree is to create a training model that can predict the classes or values of target 

variables by learning decision rules inferred from training data. Following its goal, the training 

data consist of environmental data will served as independent variables or target variables and 

Fish Class points will be the dependent variables. Decision tree procedure was run under default 

parameters within the ‘r-part’ package in Program R. 

 

As mentioned, GLM also being conducted for model performance comparison. Generalized 

linear models (GLMs) are a means of modeling the relationship between a variable whose 

outcome we wish to predict and one or more explanatory variables. The predicted variable is 

called the target variable and is denoted y (Goldburd et al, 2008). GLMs model the relationship 

between µi (the model prediction) and the predictors as follows: 

 

𝑔(𝜇𝑖) =  𝛽0 + 𝛽1𝑥𝑖1 +  𝛽2𝑥𝑖2 + ⋯ +  𝛽𝑝𝑥𝑖𝑝      (1) 

 

Equation 1 states that some specified transformation of 𝜇𝑖  (denoted 𝑔(𝜇𝑖) ) is equal to the 

intercept (denoted 𝛽0) plus a linear combination of the predictors and the coefficients, which are 

denoted 𝛽1 . . . 𝛽𝑝. By applying this concept, environmental data acted as predictor variables 

which will calculate the value of 𝑔(𝜇𝑖) as the model prediction. Similar with decision tree, the 

GLM also being proceed in Program-R using ‘glm’ package.   

  

 

3. RESULTS AND DISCUSSION 

 

The models performance was applied in the same time, which is the first week of January 2017.  

Based on the constructed decision tree showed in Figure 2, we obtained SST as the most 

impacting variables in the model construction followed by SSH and Chl-a, while for GLM, Chl-

a was the most impacting variable followed by SST and SSH. 

 

Results from both model showed their capability to determinate skipjack tuna fishing ground and 

the maps generated by the models displayed in Figure 4. With the intention to knowing the fittest 

model with this study purpose, several accuracy assessment being carried out by using the testing 

points. We then compared the confusion matrix, Area Under Curve (AUC) and mean accuracy 

from them to find out which one having a better performance. Comparison between the mean 

accuracy and AUC value showed in Table 1 and the confusion matrix of their performance 

showed in Table 2. Based on the accuracy assessment, we stated if decision tree able to exceed 

GLM performance with AUC value and mean accuracy about 0.876 and 0.931, respectively. 

GLM only acquired 0.690 and 0.860 for its accuracy and AUC value.  
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Figure 4. Decision Tree Construction 

 

Table 1. Accuracy Assessment Comparison  

Prediction Model Mean Accuracy AUC 

Decision Tree 0.876 0.931 

GLM 0.690 0.860 

 

Table 2. Confusion Matrix Model Performances 

Models 

 

Observed 

Fish Area No Fish Area 

Decision Tree 

P
re

d
ic

te
d

 Fish Area 73 0 

No Fish Area 6 38 

GLM 
Fish Area 30 4 

No Fish Area 43 40 
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Figure 5. (a) Fishing Ground Prediction using Decision Tree; (b) using GLM 

 

 

4. CONCLUSION 
 

Based on study in the recent past, skipjack tuna aggregation appears to be severely affected by 

marine environmental parameter. Besides, the catch points of skipjack tuna displayed in Figure 

1 indicate if the catching activity by the vessel happen in area with SSH lower than 0.5 m. Each 

variable appears to have different importance level in each model construction. This was likely 

reasonable happened caused by the models different algorithm in predicting. From the accuracy 

assessment of each model, we can state if decision tree performance surpassed GLM, proving it 

as the fittest model to be used for this study purpose. But other than that, fishing ground 

probability maps showed in Figure 5 still indicated area with null data value. This issue occurred 

due to null value in the Chl-a data. in order to get a better result, it best to obtain the data with 

less null value in the future  
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