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ABSTRACT: The success of deep learning algorithms applied on large-scale remotely sensed imagery rests on 
the representativeness of the samples used to train the model. When the source domain training samples do not 
fully represent the target domain samples where no prior information is available, the trained model may fail to 
adapt to the target domain, which makes it compulsory to repeat the time-consuming labeling process. Even 
though this issue could be a critical point to apply deep learning algorithms to change detection in remote sensing, 
the vast majority of change detection algorithms have not considered the discrepancy between the two domains, 
and in turn, failed to generalize their performance on a newly given area. To address this problem, we focus on 
the discrepancy where the class distributions of the two domains are not balanced, defined as the prior probability 
shift, associated with the supervised change detection. This research shows that the performance of a convolutional 
neural network (CNN) is largely impaired by the inconsistent changed ratio and proposes a novel approach to 
resolve the problem of prior probability shift.  The proposed framework estimated the changed ratio of the target 
domain by patch-based change vector analysis (CVA) and calibrated the change threshold from the softmax output 
of the CNN to adapt well to the target domain. The framework was implemented in three sub-regions with various 
changed ratios of 20.0 %, 45.0 %, and 35.0 %, acquired from bi-temporal Unmanned Aerial Vehicle (UAV) 
imagery with 0.1-m resolution including RGB channels and digital surface model (DSM). A total of 1,000 and 
2,000 training samples drawn from each of the three sub-regions (source domain), with the two different sampling 
scenarios (i.e., balanced sampling and imbalanced sampling), were trained by a CNN. Subsequently, the trained 
CNN was adapted using the patch-based CVA and tested on the two other sub-regions (target domains) of different 
change/non-change ratios, respectively. The proposed framework was separately applied to RGB imagery and 
RGB + DSM imagery. The results demonstrated an improvement in the change detection performance by 
evaluating the overall accuracy, recall, precision, and F1-score, thus confirming the effectiveness of the proposed 
framework to address the prior probability shift problem. 

 

1. INTRODUCTION 
 

With great advances in remote sensing technology, the amount of remotely sensed imagery produced by 
spaceborne and airborne sensors is growing enormously. To deal with rapidly increasing amounts of data, techniques 
to effectively interpret the earth’s surface are developing. Change detection is one of the most important techniques 
in remote sensing, and is widely used to update changes to manage a large-scale area (Hansen, 2012; Tewkesbury, 
2015). Significant knowledge for urban and environmental studies can be attained from accurate and timely change 
detection (Rahman, 2016; Sexton, 2015). Although there have been numerous efforts to develop change detection 
techniques, there is still no universal change detection algorithm with high accuracy that can keep the pace of rapidly 
accumulating remotely sensed data (Hussain, 2013; Qin, 2016). Therefore, development of a change detection is 
imperative. 

Depending on the presence of prior knowledge in the investigation area, change detection algorithms are generally 
divided into supervised methods and unsupervised methods (Tewkesbury, 2015). Supervised methods learn the 
decision boundary of change/non-change by training the groundtruth data; however, unsupervised methods do not 
require prior knowledge of the data. Although unsupervised methods have the advantage that they do not require 
training samples, it is difficult to set a certain threshold of change, and the accuracy of the clustering method depends 
too much on the parameters chosen (Hussain, 2013). In addition, remote-sensing data are often obtained from 
multimodal sensors, namely, optical sensor, synthetic aperture radar, and LiDAR, so the properties and the 
dimensions of the data differ (Wegner, 2010; Bovolo, 2015; Zhang, 2015). Moreover, multimodal data consist of data 
with varying precisions and, in most cases, have different abilities for solving a given task (Byun, 2013; Jung, 2014; 
Chang, 2015). Therefore, an algorithm that can consider non-linear features, and assign a different weight to each of 
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the data therein, is desirable (Bovolo, 2015; Mou, 2018). However, most of the unsupervised algorithms lose 
information of the original data because most of them use simplified subspace of the original feature space to solve 
the problem, and cannot automatically identify the importance among features (Bovolo, 2015). Thus, the differences 
between bi-temporal images, intertwined with light scattering mechanisms and multimodal data sources, should be 
addressed using a learning-based method that can learn complex and non-linear behavior. 

Among the supervised methods, deep neural networks have recently shown successful performance in change 
detection applications (Zhu, 2017; Song, 2018; Mou, 2018). Deep neural networks with multiple non-linear layers 
effectively learn high-level abstract features in the multi-temporal images, and outperform conventional machine 
learning algorithms (Heydari, 2019). However, to perform deep learning successfully, a large number of training 
samples are often required, and the success of deep learning algorithms largely depends on the representativeness of 
the samples used to train the model (LeCun, 2015). In many applications for remotely sensed imagery, however, 
collecting groundtruth information of a good representation is often expensive and labor-intensive. Thus, there have 
been studies reusing the trained model or the collected training samples to the scenes for which there is no existing 
knowledge (Persello, 2014); however, directly applying the trained model or the collected training samples to an 
unseen area often fails (Tuia, 2016).  

Performance degradation is likely to occur when the trained model, through any machine learning algorithms, is 
applied to a new region (target domain) that is different from the region (source domain) where the training samples 
are collected. This is because of the dataset shift where the joint distribution of inputs and outputs differs between the 
training and test datasets (Moreno-Torres, 2012). To tackle the problem where the distribution in the source domain 
does not fully represent the distribution in the target domain, there have been studies to overcome the discrepancy 
between two domains; this is known as domain adaptation (Patel, 2015). Domain adaptation is a specific branch of 
the transfer learning problem with multitask learning, self-taught learning, sample selection bias, and covariate shift 
(Pan, 2009). Among the branches of transfer learning, the domain adaptation problem refers to the case where the 
joint probabilities distribution of the two domains describing the relationship between the input variable and the 
output variable are similar but not identical. Therefore, the goal of domain adaptation methods is to bridge the two 
distribution gaps so that the algorithms that work in the source domain work well in the target domain as well. 

In remote sensing, the domain adaptation problem is very common and occurs in various forms in intertwined 
manners. This occurs when the imageries to be dealt with share common characteristics, but they were acquired from 
different areas, at different times, or from different sensors. Of course, domain adaptation problems also arise in 
performing change detection. However, the vast majority of change detection algorithms have not considered their 
performance in diverse domains, and in turn, failed to generalize their performance due to discrepancy among the 
domains.  Among the dataset shifts, inducing domain adaptation problem, the prior probability shift specifically refers 
to changes in the distribution of the class variable (Moreno-Torres, 2012; Redko, 2019). The prior probability shift is 
prevalent in change detection because changes in remote sensing occur with the different speed regionally over a very 
large area. To elaborate, urban development does not change at the same rate over the entire range, but the rate of 
change in urban development varies considerably from region to region. Likewise, changes caused by disasters also 
vary greatly in each region. In this situation, obviously, the prior probability shift occurs and severely degrades the 
change detection performance. However, very few studies have considered the prior probability shift in change 
detection.  

Figure 1 illustrates examples of the prior probability shifts in two-dimensional feature spaces. The samples of 
input variables � are represented as points in the feature spaces with the two different class �� and ��. The goal of 
change detection algorithm is to find an optimal decision boundary to identify whether the incoming data change or 
not. The class conditional probability density of each class is the same in all domain, i.e., ��(�|��) = ���(�|��) =
���(�|��) , where � = 1, 2 . However, the prior probability of each class is different in all domains. The prior 
probability ratio for each class is 50:50 in the source domain, whereas the prior probability ratio for each class is 
20:80 in the target domain 1 and 80:20 in the target domain 2, i.e., ��(��) ≠ ���(��) and ��(��) ≠ ���(��), where � =
1, 2 . As a result, the joint probabilities on the source and target domain is different, i.e., ��(�|��)��(��) ≠
���(�|��)���(��) and ��(�|��)��(��) ≠ ���(�|��)���(��), where � = 1, 2. Therefore, the decision boundary in the 
source domain should be calibrated to attain optimal result in the target domain. This problem is of crucial importance 
since the changed ratio greatly differs in remotely sensed imagery. 

Figure 1. Examples of the Prior Probability Shift in Binary Classification  
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In this research, we focused on the prior probability shift problem in change detection. We firstly observed that 
the prior probability shift problem severely degrades the change detection performance. Then, an approach to resolve 
the problem of prior probability shift has been proposed. The proposed novel framework estimates the changed ratio 
of the target domain by the patch-based change vector analysis (CVA) and calibrates the decision boundary by 
ranking the softmax output of the convolutional neural network (CNN) to adapt well to the target domain. The 
proposed framework was implemented in three sub-regions with various changed ratios acquired from bi-temporal 
Unmanned Aerial Vehicle (UAV) imagery with 0.1-m resolution including RGB channels and digital surface model 
(DSM). The results from the six dataset shifts among the three sub-regions demonstrated the effectiveness of the 
proposed framework to address the prior probability shift problem.  

The rest of this paper is organized as follows: Section 2 presents the proposed framework for domain adaptation 
under prior probability shift, Section 3 includes the datasets, experimental results, and discussion, and Section 4 
concludes this paper.  

 

2. DOMAIN ADAPTATION FRAMEWORK 
 
In remote sensing literature, various approaches have been presented to address the domain adaptation problem. 

Adaptation methods can be grouped into four categories (Tuia, 2016). The first category methods involve finding and 
utilizing invariant features during the shift between the two domains (Bruzzone, 2009). The second category methods 
involve aligning the distribution of the source domain with the distribution of the target domain and perform the 
adaptation using the same classifier (Yang, 2015). The third category methods involve applying the trained model 
from the source domain to the target domain in a semi-supervised manner leaving both distributions intact (Rajan, 
2006; Bahirat, 2011). The last category methods involve assuming the presence of a few labeled samples in the target 
domain, and by utilizing these, making the classifier adapt to the target domain (Crawford, 2013; Yu, 2017).  

To solve the domain adaptation problem, it is important to select an appropriate method considering the available 
data and the given type of dataset shift. In this study, we concentrated on the prior probability shift problem that 
occurs among spatially disjoint areas acquired in the same time zone. Since the changed ratio varies locally in large-
scale remotely sensed imagery, we assumed that the different prior probabilities among the domains could be the 
decisive factor of the datasets shift in change detection tasks. In addition, we supposed the case where the training 
sample of the target domain is not available. Thus, among the aforementioned methods, it was determined that the 
selection of a methodology belonging to the third category, where the trained model is adapted to the target domain, 
is desirable. 

In short, the proposed framework adapted the trained model to the target domain considering its prior probability 
estimated by unsupervised algorithm. We adopted CNN for training model and the patch-based CVA for estimating 
the prior probability of the target domain.  

The flowchart of the proposed framework can be summarized as follows (Figure 2). 
1) Let the CNN trained from the source domain infer the target domain and rank the probabilities of change for 

each input derived from the softmax output of the trained CNN. 
2) Calculate the threshold that maximizes the overall accuracy in the source domain using the patch-based CVA 

on imagery. 
3) Apply the threshold obtained in step 2) to the target domains and estimate the changed ratio of the target 

domain. 
4) Assign the changed pixel in order of the highest probability derived from the CNN, assuming that the target 

domain change has been made by the changed ratio estimated using CVA. 
 A change detection map was generated by applying the proposed method for every pixel in the target scene. 

Figure 2. Overview of the Proposed Domain Adaptation Framework. 
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2.1 Estimation of the Changed Ratio via the patch-based CVA 
 
CVA, a widely used unsupervised algorithm for change detection, is adopted to estimate the changed ratio of the 

target domain. This is because CVA does not require a training sample, and it is believed to be more insensitive to 
the change in the distribution than a CNN. 

CVA subtracts corresponding bands of bi-temporal images to calculate the difference between two images and 
determine the changed pixel (Bovolo, 2006). In this experiment, a patch-wise performing CVA was adopted and only 
its magnitude to identify changed pixels was considered. Since a pixel-based CVA is assumed to be liable to 
illumination variations, which yield salt and pepper noises, we considered a patch-based CVA is better to estimate 
changed ratio accurately by averaging the noise effects. The patch size was determined to be 9 pixel by 9 pixel, 
approximately covering the area of 1-m by 1-m in this study area, in order to produce the optimal threshold. The 
magnitude �(�, �) of the patch-based CVA was calculated by the following formula (1): 
 

�(�, �) = ∑ ∑ ∑ ���(� + �, � + �) − ��
� (� + �, � + �)����                                     (1) 

 
where (�, �) is the pixel coordinate of the image, and �, � =	-4, -3, -2, -1, 0, 1, 2, 3, 4. �� and ��

�  are the digital 
number of the ��� band of bi-temporal imagery. 

In addition, for RGB-D imagery, a weight of three was assigned to DSM compared to the weight of one assigned 
to each RGB band. This is because the DSM information is more insensitive to the illumination variations than the 
RGB channel’s spectral information in general (Tian, 2013; Qin, 2014). For RGB imagery, the changed ratio was 
estimated with the patch-based CVA using only RGB imagery. This is firstly for those cases where only RGB is 
available, and secondly, we tried to test whether the CVA estimates the changed ratio soundly using the optic image 
alone provided that most of the changes involve the changes in RGB. If the estimation is acceptable, even with RGB 
alone, it is also possible to estimate the change/non-change ratio when additional data, other than RGB and requiring 
non-linear operations, should be considered. 

The estimation for the changed ratio of the target domain via the patch-based CVA is as follows. First, find the 
optimal magnitude of the patch-based CVA that maximizes the overall accuracy in the source domain. In this process, 
find the ��� percentile of the magnitude that yields the highest overall accuracy in the source domain. Then, the 
threshold value maximizing overall accuracy in the source domain is directly applied to the target domain to estimate 
its changed ratio. Under the assumption that the optimal threshold obtained from patch-based CVA does not vary 
greatly according to the training sample, the threshold was determined once at the start by examining the entire pixel 
of each source domain. 

 

2.2 CNN Architecture 
 

In this study, the proposed framework adopted a CNN as a training model. This is because CNN is a widely used 
supervised method for change detection and has demonstrated successful performance. A CNN consists of a large 
number of trainable parameters with consecutive layers that allow the network to learn high-level abstract features 
from the massive input data (LeCun, 2015). However, a CNN learns its parameter to minimize the loss with the given 
distribution of the training samples similar to other supervised algorithms. Thus, the trained model is prone to failure 
in classification when the test samples lie on different distributions. Therefore, adaptation of a CNN to the target 
domain is crucial to maintain its good performance. 

The adopted CNN consists of three convolutional layers, and each layer having 10, 20, and 40 filters, respectively. 
The filter size of the first convolutional layer was 3 by 3, and the filter size of the second and third convolutional 
layers was 2 by 2. The CNN takes three-dimensional patch as inputs. The patch size of the CNN was also determined 
to be 9 pixel by 9 pixel, same as the patch-based CVA. After taking this input, the trained CNN can produce the 
probability whether the center pixel of the patch has changed or not with the softmax output (Alshehhi, 2017; Xu, 
2018). As two sets of stacked bi-temporal RGB imagery and RGB-D imagery were used, the CNN takes the input 
either with a size of 9 by 9 by 6 for stacked RGB imagery or with a size of 9 by 9 by 8 for stacked RGB-D imagery. 
Then, each CNN learns the decision boundary to solve a binary problem. As a small size of patch is used as an input, 
the pooling layer is not used. Also, the fully-connected layer is excluded to lower the complexity. ReLU (Rectified 
Linear Unit) and the Adam optimizer (Kingma, 2014) with a learning rate of 0.001 were used.  

Most CNNs have a deep and complex network with a large number of trainable parameters because the distinctive 
advantage of the CNN is its ability to deal with big and intricate data (Canziani, 2016). However, the CNN used in 
this experiment has considerably low complexity. This is because a CNN with high complexity increases the 
computational burden and necessitates a large number of training samples for the network to perform well without 
overfitting (He, 2016; Song, 2019). Considering the given task of performing a binary classification with a small size 
of patch as an input, a lightweight CNN was used as adopted in (Song, 2019), but the proposed framework is not 
limited to the CNN used here. 
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2.3 Calibration of the Prior Probability Shift 
 
Although CNN fails to produce accurate posterior probability, the rank of the probabilities of change, inferred 

from the softmax output in the CNN, is still valid provided only a prior probability shift has occurred. Therefore, it 
was assumed that the dataset shift problem can be alleviated by estimating the prior probability in the target domain 
from the information produced from the source domain. 

From the above observations, the proposed framework effectively calibrates the prior probability shift 
problem. First, the changed ratio of the target domain is estimated as described in subsection 2.1. Then, the trained 
CNN, illustrated in subsection 2.2., infers the target domain and produces the probabilities of change using the 
softmax output. Subsequently, it is determined whether the sample has changed in the order of the highest probability 
under the assumption that the target domain has changed by the estimated changed ratio from the patch-based CVA. 
With this process, it is possible to calibrate the bias of the CNN created by the different prior probability of the classes. 

 

3. EXPERIMENTAL RESULTS AND DISCUSSION 
 
In this section, the study area and the changed ratios predicted by the CVAs are presented. Afterward, the 

performance of the proposed framework is assessed. The results from the six dataset shifts among three sub-regions 
(i.e., from A to B and C, from B to A and C, and from C to A and B) with two different sampling scenarios and the 
two different training sample sizes are illustrated. 

  

3.1 Datasets and Preprocessing 
 
The proposed domain adaptation framework was evaluated in the study area where the hurricane caused many 

changes in buildings and vegetation. The study area, a Holiday Beach in Rockport in southern Texas, had experienced 
significant changes during the recovery of Hurricane Harvey (Figure 3). Bi-temporal images were acquired from 
UAV and processed using Agisoft Photoscan Pro Software to generate the orthomosaic RGB imagery and DSM. 
Since the UAV imagery covers a large area, we clipped three sub-regions and down-sampled them to 0.1-m 
resolution. The three sub-regions (A, B, and C) consisted of 500 by 500 pixels each and had the changed ratio of 20.0 
%, 45.0 %, and 35.0 %, respectively. Water bodies were excluded from the experiment because orthomosaic images 
and DSM over the water bodies are generally of poor quality and not reliable. We also excluded areas scattered with 
small, insignificant objects because it is difficult to identify whether they change. 

The CNN was trained using the training samples drawn from each of the three sub-regions (source domain). 
Subsequently, the trained CNN was adapted and tested to the two other sub-regions (target domain) that have 
different change/non-change ratios such that the proposed framework was assessed on six dataset shifts (i.e., from 
A to B and C, from B to A and C, and from C to A and B).  In addition, a total of 1,000 and 2,000 training samples 
were tested with balanced sampling scenario and imbalanced scenario. The balanced sampling scenario has the 
same size of training samples for each class (i.e., 500 samples for non-changed class and 500 samples for changed 
class out of a total of 1,000 training samples). On the contrary, the imbalanced sampling scenario sampled the 
training samples for each class with the same proportion to the class ratio of each scene. To sum up, with the two 

Figure 3. Experimental Areas 
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sampling scenarios and the two different training sample sizes, the performance of the proposed framework was 
evaluated. Additionally, the proposed framework was applied separately to RGB and RGB-D imagery. For the 
CNN, bi-temporal images were stacked to conserve the full information in original images and binary classification 
was performed as adopted in (Volpi, 2013). All values in RGB and DSM were rescaled to the range of [0, 1] by 
min-max normalization before the operation of the CNN and CVA. 

 

3.2 Estimated Changed Ratio through CVA 
 

The estimated changed ratios and their errors are reported in Table 1. The results of the pixel-based CVA and 
the patch-based CVA from the two types of imageries are illustrated. In addition, the mean absolute error (MAE) for 
each case is calculated. As a result, the patch-based CVAs estimated the changed ratio more accurately by 4.1 % for 
RGB and by 4.4 % for RGB-D than the pixel-based CVAs. Therefore, it was confirmed that the use of patch-based 
CVA is desirable. 

Another notable point is that the error varies depending on the source domain. When the source domain is A, the 
changed ratios were underestimated in all cases. This is presumably due to the fact that the source domain A has a 
relatively small changed ratio, hence the calculated threshold maximizing the overall accuracy (OA) might be low. 

 
Table 1. Estimation of the Changed Ratio Using the Pixel-based CVA and the Patch-based CVA (The values in 

parenthesis indicate the error.) 

 Threshold from the Pixel-Based CVA Threshold from the Patch-Based CVA 

RGB 
Imagery 

Target 
Source A B C 

Target 
Source A B C 

A - 
14.2% 

(-30.8%) 
12.0% 

(-23.0%) 
A - 

28.5% 
(-16.5%) 

24.5% 
(-10.5%) 

B 
36.5% 

(+16.5%) 
- 

39.7% 
(+4.7%) 

B 
29.9% 
(+9.9%) 

- 
44.3% 
(+9.3%) 

C 
30.0% 

(+10.0%) 
37.7% 
(-7.3%) 

- C 
28.7% 
(+8.7%) 

46.5% 
(+1.5%) 

- 

MAE (%) 11.6% MAE (%) 7.5% 

RGB-D 
Imagery 

Target 
Source A B C 

Target 
Source A B C 

A - 
21.5% 

(-23.5%) 
14.7% 

(-20.3%) 
A - 

36.2% 
(-8.8%) 

29.5% 
(-5.5%) 

B 
32.4% 

(+12.4%) 
- 

39.2% 
(+4.2%) 

B 
27.5% 
(+7.5%) 

- 
40.3% 
(+5.3%) 

C 
29.2% 
(+9.2%) 

43.6% 
(-1.4%) 

- C 
26.8% 
(+6.8%) 

46.7% 
(+1.7%) 

- 

MAE (%) 9.2% MAE (%) 4.8% 

 

3.3 Domain Adaptation Results 
 

In this subsection, the domain adaptation performance of the proposed framework in RGB and RGB-D 
imageries is evaluated. The proposed network trained a total of 1,000 and 2,000 training sample sizes from the 
source domain with the two different sampling scenarios (i.e., balanced sampling and imbalanced sampling), and 
then predicted all pixels in the target domains. The estimated changed ratios produced from the patch-based CVA 
(in Table 1) were applied to RGB and RGB-D imagery. Random samplings for every case were replicated five 
times to increase the statistical confidence of the results. 

The results of OA from the six dataset shifts (i.e., from A to B and C, from B to A and C, and from C to A 
and B) with the two sampling scenarios using RGB and RGB-D imagery are shown in Table 2 and Table 3, 
respectively. All values in Table 2 and Table 3 are in percent, and the results from using the training sample size of 
2,000 was excluded because it showed a similar trend to that of 1,000. In both scenarios, the accuracy increased 
after domain adaptation except for the few cases.  

In particular, when the target domain is scene A, the proposed framework greatly increased the accuracy. This 
is because the actual change rate of scene A is 20.0 %, which is quite different from the balanced sampling scenario’s 
assumption of 50.0 %. Overall, including the two sampling scenarios, the average of OA increased by 3.2 % and 
4.6 % after the domain adaptation for RGB and RGB-D imagery, respectively. Without the domain adaptation, 
imbalanced sampling was more accurate than the balanced sampling, but after the domain adaptation, the two 
accuracies were similarly high regardless of the sampling method. The difference in accuracy between the balanced 
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and imbalanced sampling scenarios was less than 0.5 % in both RGB and RGB-D after the domain adaptation. This 
result indicates that the proposed framework is less sensitive to sampling strategy, which can later relieve a burden 
of determining a sampling ratio. Additionally, when comparing RGB and RGB-D, the use of RGB-D is 3.2 % more 
accurate than the use of RGB imagery alone.  

Table 4 shows the results of the domain adaptation with the proposed framework for each sub-region. The 
results from the two sample sizes with the balanced sampling are shown. The change detection results without 
dataset shift (the training and the test were performed in the same sub-region) are also shown in Table 4. The recall, 
precision and F1-score were reported together. Overall, the proposed framework increased the accuracy regardless 
of imagery set and training sample size. The increase in accuracy was particularly significant when the target scene 
was A. The results can be attributed to the relatively small changed ratio of the scene A compared to the balanced 
sampling scenario’s assumption of 50.0 %. Additionally, when the domain adaptation was performed on the scene 
A, the recall decreased but precision increased, resulting in an increase in F1-score. This is because the CNN trained 
with the balanced sample overestimated the changed ratio of A as it assumed the prior probability of change was 
half. The larger the difference between the actual change rate and the 50.0 % change rate, the assumption of balanced 
sampling, the greater the effect of domain adaptation. This confirms that the prior probability shift can significantly 
degrade the performance of supervised algorithm. Furthermore, it suggests that the proposed framework can be 
more effective especially where the variation of changed ratios among domains is large. 

However, the accuracies after domain adaptation are still lower than the accuracies when the dataset shift does 
not occur. This discrepancy can be attributed to the wrong estimation of the changed ratio. Another reason is due to 
the fact that the proposed framework is developed based on the fact that only the prior probability shift may occur. 
The changed patterns might have been different for each sub-region, and thus, the CNN could not have learned 
some patterns of change that occurred in the target domain. Further research is required to address other kinds of 
dataset shifts in change detection. 

Another noteworthy observation is that, when the domain adaptation was not performed, the accuracy with 
the training sample size of 2,000 is lower than the accuracy after the domain adaptation was performed with 
training sample size of 1,000. The results after the domain adaptation using training sample size of 1,000 is 0.4 % 
and 3.5 % more accurate than that of using training sample size of 2,000 without domain adaptation in RGB and 
RGB-D imagery, respectively. This finding confirms that domain adaptation is crucial when the class imbalance 
among domains is severe and that the proposed framework can improve change detection performance. 
 

Table 2. Domain Adaptation Results with RGB Imagery (training sample size = 1,000, and all values are in percent.) 

RGB Imagery 
Balanced Sampling Scenario Imbalanced Sampling Scenario 

w/o Domain 
Adaptation 

w/ Domain 
Adaptation 

w/o Domain 
Adaptation 

w/ Domain 
Adaptation 

Target 
Source 

A B C A B C A B C A B C 

A - 76.3 73.0 - 74.0 74.2 - 71.2 73.4 - 72.4 73.9 

B 71.3 - 74.6 81.2 - 74.6 73.1 - 75.4 79.4 - 75.3 

C 64.9 72.5 - 80.1 73.7 - 74.9 76.1 - 79.6 76.3 - 

Avg. OA 72.1 76.3 74.0 76.1 

 
Table 3. Domain Adaptation Results with RGB-D Imagery (training sample size = 1,000 and all values are in percent.) 

RGB-D 
Imagery 

Balanced Sampling Scenario Imbalanced Sampling Scenario 

w/o Domain 
Adaptation 

w/ Domain 
Adaptation 

w/o Domain 
Adaptation 

w/ Domain 
Adaptation 

Target 
Source 

A B C A B C A B C A B C 

A - 80.0 76.3 - 79.7 77.2 - 71.7 73.7 - 78.3 76.0 

B 66.2 - 75.8 83.2 - 76.9 76.0 - 77.0 82.9 - 77.2 

C 62.7 78.8 - 82.1 79.0 - 84.2 76.4 - 82.4 78.5 - 

Avg. OA 73.3 79.7 76.5 79.2 
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Table 4. Domain Adaptation Results with the Two Different Sample Sizes (All values are in percent.) 

Balanced Sampling 

Training Sample Size = 1,000 Training Sample Size = 2,000 

w/o Dataset shift 
(Source = Target) 

w/ Dataset shift 
w/o Dataset shift 
(Source = Target) 

w/ Dataset shift 

w/o Domain 
Adaptation 

w/ Domain 
Adaptation 

w/o Domain 
Adaptation 

w/ Domain 
Adaptation 

Target 
Imagery 

A B C A B C A B C A B C A B C A B C 

RGB 

OA 88.7 86.3 78.9 68.1 74.4 73.8 80.7 73.9 74.4 89.5 88.3 81.8 74.5 77.7 75.6 82.0 76.2 75.2 

Recall 89.9 86.9 87.4 84.8 75.2 72.7 75.0 62.7 62.5 93.0 87.7 84.2 83.5 74.8 75.5 78.2 65.2 63.6 

Precision 66.4 83.5 65.2 38.0 71.5 60.9 51.1 76.7 64.8 67.4 86.8 70.4 44.1 75.8 62.7 53.4 79.5 66.0 

F1-Score 76.2 85.1 74.4 52.1 72.4 65.7 60.8 68.0 62.3 78.1 87.1 76.4 57.3 75.0 68.4 63.5 70.6 63.4 

Avg. OA 84.6 72.1 76.3 86.5 75.9 77.8 

RGB-D 

OA 90.1 87.0 89.3 64.4 79.4 76.1 82.7 79.4 77.0 91.1 90.7 86.1 69.0 81.6 78.0 83.3 81.2 77.8 

Recall 91.7 87.0 88.2 86.8 76.7 71.7 74.6 73.1 67.1 93.9 88.0 90.2 86.3 80.3 73.0 76.1 75.2 68.2 

Precision 69.7 84.5 82.6 37.2 78.0 64.9 55.0 79.9 67.7 71.2 91.0 76.4 39.1 79.6 67.2 56.1 81.8 68.9 

F1-Score 78.9 85.6 85.3 50.9 76.9 67.3 63.3 76.1 67.0 80.9 89.5 82.4 53.4 79.7 69.8 64.6 78.0 68.1 

Avg. OA 88.8 73.3 79.7 89.3 76.2 80.8 
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4. CONCLUSION 
 

In this paper, we proposed a novel framework for domain adaptation in change detection working under prior 
probability shift. The proposed framework estimated the changed ratio of the target domain by the patch-based CVA 
and adjusted the change threshold for a CNN to adapt well to the target domain. 

The experiments on the two sets of bi-temporal imagery, RGB and RGB-D with diverse changed ratios, 
demonstrate that the proposed framework successfully rectifies the biased threshold and improves the change 
detection performance. The proposed framework was evaluated with the six different dataset shifts from three sub-
regions, including two different sampling scenarios and two different training sample sizes, thus the effectiveness 
of the proposed method was validated for various conditions. In addition, it is confirmed that the accuracy of the 
estimated changed ratio is vital where the prior probability shift is dominant and the patch-based CVA is more 
accurate in estimating the changed ratio than the pixel-based CVA. Furthermore, experiments on the two different 
sample sizes showed that the domain adaptation was essential to improve the change detection performance in the 
target domain. 

With the increase in the amount of remotely sensed data, previous studies excessively focused on deep complex 
networks trained with massive data. However, the results of this experimental study indicate that deep learning with 
a large amount of training data has limitations and its performance can be improved with domain adaptation. This 
study showed that domain adaptation is compulsory to utilize the training sample appropriately and to process a large 
amount of data effectively. In addition, changes in remotely sensed imagery occur globally and differ regionally. 
Thus, the proposed framework being capable of solving the prevailing prior probability shift occurring over a large 
area has advantages. Last but not the least, the proposed framework can be applied to a wide variety of classifiers. 
The use of this framework with the combination of other supervised algorithms providing classification results as a 
probability and other unsupervised algorithms estimating the changed ratio can further increase the change detection 
accuracy.  

Further study will focus on the improvement of changed ratio estimation using different unsupervised 
algorithms and address other kinds of dataset shifts with different types of data. 
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