
 

1 

 

A BIG DATA PLATFORM FOR REMOTE SENSING DATA PROCESSING   

Chen Xu (1,2), Xiaoping Du (1)
*
 

1 Key Laboratory of Digital Earth, Institute of Remote Sensing and Digital Earth (RADI), 

Chinese Academy of Sciences, 100094 Beijing, China 
2 Université de Lyon, INSA Lyon, 25 Avenue Jean Capelle, 69621 Villeurbanne Cedex, France 

*
Email:duxp@radi.ac.cn 

 

ABSTRACT: Remote sensing data are growing exponentially while few of which are used 

efficiently due to the lack of data processing capabilities. Consequently, mass remote sensing 

data processing is currently one of the most popular topics in the field of Geosciences. In this 

study, Remote Sensing Big Data Platform (RSBDP), a cluster-based data processing framework, 

is introduced. The aim of RSBDP is to store, manage and process large scale of remote sensing 

data in a cluster computing environment. The platform consists of three main parts: Hadoop-

based RS file storage system, Quad-Tree and Hilbert curve based RS index system and Spark-

based geospatial data processing system. Data is stored separately and redundantly in the 

platform while high-speed and high-concurrency data requests are supported. Structured data 

and indexed data are organized as key-value pair in HBase. A spatial index based on Quad-Tree 

and Hilbert curve is constructed for heterogeneous tiled remote sensing data which makes 

efficient data retrieval in HBase. We use Apache Spark as the analytics engine for big remote 

sensing data processing. Distributed in-memory computing architecture allows high performance 

remote sensing data analytics and applications. The result of tests proves RSBDP prototype can 

store, retrieve, and process heterogeneous remote sensing data efficiently. Meanwhile, Python 

code can be transplanted to RSBDP conveniently. It reveals RSBDP’s potentials and capabilities 

of big remote sensing data processing.  

KEY WORDS: big data, remote sensing data processing, distributed file system, HBase, 
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1. INTRODUCTION 

In recent years, the progress of high-resolution earth observation approaches gives birth to the 

proliferation of RS data. The data gathered by a satellite centre are accumulating at a rate of 

terabytes per day [1]. Based on large-scale remote sensing data, the demand for various RS 

applications need the support of enormous computational power [2]. Great efforts have been 

towards the availability of RS data and computation. Cluster based [3] and Cloud based HPC [4] 

are two dominating patterns for RS bigdata system. To achieve the high availability of RS data, 

parallel files systems have been widely applied, e.g. OrangeFS [5] and HDFS [6]. In regards to 

the programming approaches, OpenMP [7] and some other programming models involve low-

level API issues. RS algorithms are difficult to implement directly through these models. 

MapReduce [8] is a successful and accessible model, but efficiency of MapReduce is expected 

to be improved. 

In this paper, we introduce a new cloud-based RS big data processing prototype platform, 

Remote Sensing Big Data Platform (RSBDP). RSBDP relies on HDFS and HBase to store RS 

data. The RS images are divided into tiles and stored in HBase, combined with efficient and 

continuous index keys based on Quad-Tree and Hilbert curve. The computational work is 
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performed by Spark [9], a powerful memory-based distributed computing engine which have 

flexible access to RS algorithm. From the experiments, the prototype platform proves quick data 

query and powerful RS data computing capabilities.  

The remainder of this paper is organized as follows. In Session 2, we describe the architecture 

of the platform ,explain the design and implementation of main components. In Session 3, we 

describe the experimental validation of the platform. Finally, we give a conclusion in Session 4. 

2. METHODOLOGY 

As the proliferation of RS data, conventional approaches are time-consuming and sometimes 

incapable. We propose Remote Sensing Big Data Platform (RSBDP) as a prototype platform for 

storage and processing large scale of RS data. 

2.1 General architecture of RSBDP 

The system is built upon virtual machines with OpenStack Cloud. Cloud offers flexible and 

guaranteed containers in support of the platform. The body of RSBDP consists of three main 

parts, RS file storage system, RS index system and geospatial data processing system. RS File 

Storage System is a storage framework to store and share RS data where Hadoop HDFS is 

applied as filesystem. NoSQL database named HBase is applied to store heterogeneous tiled RS 

data. RS Index System is a RS data index framework following the rules of Quad-Tree and 

Hilbert curve. The framework rules the structure of unique key for HBase and provides access 

for rapid and flexible query capacities. Geospatial Data Processing System is an on-demand 

computing framework on top of the Hadoop YARN. Spark is proposed to enable distributed in-

memory computation. 

2.2 RS data storage with HDFS and HBase 

The availability of RS data is the essential concern in regards to intensive RS data subscription 

and distribution service. HDFS forms the base of the RS File Storage System to provide high-

throughput access to RS data. HDFS is a distributed file system where data are replicated and 

stored in the distributed cluster. The RS file are replicated as 3 in storage system as default. 

Especially, part of hotspot data should be replicated more copies to meet up with the frequent 

subscription requirement. Following this manner, the data are secured with the multi-transcript 

stored in the different nodes. Additionally, load balance is enabled automatically to avoid 

network bottleneck of single node. To be specific, files stored in HDFS are always divided into 

blocks with certain size, the default size is 128MB. To reach the targeted RS data, a query should 

be performed on the related HBase table to obtain the file path redirecting to the file stored in 

HDFS.  

However, under certain circumstances, e.g. change detection, targeted data are hidden inside 

several giant files. Subscription of all these files is not acceptable. In addition to the direct storage 

in HDFS, we propose to save the RS raster data in HBase as well. Firstly, giant RS files are 

divided into small tile files with the same pixel size, e.g. 256*256 pixels. Secondly, the binary 

tile file is converted to string with Base64 which is support by HBase. Each tile is then marked 

with a unique indexing row key with which we can find the tile in a large table of HBase. HBase 

supports the storage of large quantities of data as well as efficient query with row key. The 

pattern to index and query each tile will be discussed in the following part. 
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2.3 RS tile data index and query with Quad-Tress and Hilbert curve 

The index and query of RS tile data is very important, compared with the data of the file metadata 

in HDFS, the tile data in HBase has greater query requirements. The efficiency of index and 

query directly affects the overall efficiency of RSBDP. HBase's query and indexing capabilities 

are not inherently powerful and only key-based queries are supported. Therefore, HBase storage 

indexes and queries for RS data need to be optimized. In this part, we discuss mainly about the 

index and query of RS tile data with Quad-Tree and Hilbert curve. 

HBase supports immense unstructured data storage as well as rapid row key index. The 

efficiency of index relies on the design of row key. Firstly, row key should be as short as possible 

while the row key is uniquely pointed to each tile. For HBase, data are listed and index with the 

dictionary order of row key while continuous query is much efficient in regards to single query. 

Hence, we should guarantee the continuity of the row keys of which the data are space and time 

related. As illustrated in Fig. 1, an instance of a row key structure designed for tile data is 

composed with 4 main parts which takes about 9 chars. The first 2 chars represent the dataset the 

file belonging to. The band and year information take about 1 and 2 chars respectively. The last 

part of the row key indicates the space location of the tile in the image. 

 

Fig. 1 Structure of row key for RS tiles 

We propose to apply the Hilbert curve to fill the image while a unique order is assigned along 

with the curve pass by the tile. Compared with other linearization curves, e.g. Peano and row, 

Hilbert curve retains the spatial concentration of orders to the greatest extent. Compared with 

Hilbert curve, there are more mutations in Peano curve. For a range query in shape of a rectangle, 

Hilbert orders contained in the query range are segmented continuous.  

2.4 RS data processing with Spark 

In this part, we propose Spark to deal with large scale of RS data processing tasks. Spark is an 

in-memory parallel computation engine which is widely applied. First, as illustrated in Fig. 2, 

according to Spark's programming paradigm, the algorithm is implemented in some 

programming languages, such as Java, Python, and Scala. Each programming language has a 

rich library of deep learning and image processing, while Spark has a rich set of components for 

processing deep learning, databases, etc. We combine the extended library of programming 

languages with Spark's operators to solve various RS processing problems. The core concept of 

Spark is Resilient Distributed Datasets (RDD). For data-intensive problems such as RS 

processing, this method can effectively save memory resources and achieve fault tolerance. Only 

the action operator will be saved in memory. For the creation of general RDD, we need to import 

RS data. According to the method mentioned above, data can be obtained from HBase or from 

HDFS. Spark then analyses the logic of the code, generating execution steps for calculations and 

processing, which are represented in the form of a directed acyclic graph. The job is then divided 

into a number of tasks and assigned to the cluster for execution. 

3



 

4 

 

 

Fig. 2 programming model with Spark and Python 

3. EXPERIMENTS AND DISCUSSION 

In this part, we implanted an experimental prototype of RSBDP. The platform consists of 7 

virtual machines with OpenStack. For purpose to verify the performance of RSBDP, some 

experiments are conducted. Firstly, we tested the query speed of HBase with two different 

patterns. Besides, the ability of spatial concentration of Hilbert curve is performed compared 

with row curve mentioned earlier. Secondly, we apply RSBDP to perform a parallel RS 

algorithm and compare the efficiency of RSBDP with a single machine. 

3.1 Experiment environment 

The prototype of RSBDP consists of 7 nodes while 2 of 7 are master nodes which control and 

guarantee the runtime of RSBDP. As illustrated in Table 1.The nodes are virtual machines 

supported by cloud through OpenStack. 4 nodes possess 8 cores of Intel Xeon E5-2690v4 16G 

of memory and 500G of storage space while the rest 3 nodes possess 4 cores of Intel Xeon E5-

2690v4 8G of memory and 300G of storage space. 

Table 1 Configuration and parameters of virtual machines of prototype 

Node Name CPU Computer Configuration 

hadoop-1-master Intel Xeon E5-2690v4 8 cores 16GB 500GB 

hadoop-2-master Intel Xeon E5-2690v4 8 cores 16GB 500GB 

hadoop-3-worker Intel Xeon E5-2690v4 8 cores 16GB 500GB 

hadoop-4-worker Intel Xeon E5-2690v4 8 cores 16GB 500GB 

hadoop-5-worker Intel Xeon E5-2690v4 4 cores 8GB 300GB 

hadoop-6-worker Intel Xeon E5-2690v4 4 cores 8GB 300GB 

hadoop-7-worker Intel Xeon E5-2690v4 4 cores 8GB 300GB 

3.2 Availability of RS data  

For a data intensive task, availability of RS data relates closely with the efficiency of RSBDP. 

As I/O is handled by HDSF and HBase, there is no need to care about the optimization of data 

transmission. Only the performance of index and query method mentioned earlier will be tested.  
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For HBase, the query speed differs in regards to the approaches applied. The query speed with 

the RSBDP prototype by range query (SCAN) and single query (GET) is estimated. Range query 

means the row key of the data to be queried are continuous and the query is finished with one 

request while the single tile query is performed with each single row key. As illustrated in Fig. 

3, with the number of data queried growing, the time consumed by single tile query is about 2.43 

times of continuous range query. 

 

Fig. 3 Runtime required to perform the 

query through continuous range query and 

single query 

 

Fig. 4 Number of queried required through 

different linearization curves 

We estimated the ability of spatial concentration of Hilbert curve which is shown in the Fig. 4. 

Supposing that most of the raster query are in the shape of rectangle, we created 5000 thousand 

of random rectangles which represent 5,000 random query regions. The tests are performed on a 

9 order Hilbert curve which contains 49*49 tiles. As is shown in Fig. 4, among 5,000 trial queries, 

Hilbert and row required similar average number of queries. Hilbert needs 253.07 times while 

row requires 257.72 times. At the same time, we noticed that when the amount of query data is 

relatively small, Hilbert needs fewer queries than row. The results of optimized Hilbert curve are 

shown in green. It is very obvious that after the optimization, efficiency of Hilbert has been 

significantly improved. The number of queries required for the optimized Hilbert is 126.77 times 

on average. 

3.3 Efficiency of parallel algorithms 

To fully test the I/O and computational performance of the RSBDP prototype, we performed a 

RS parallel computation using the RSBDP prototype. Edge detection is a relatively common 

algorithm in the RS field. The performance test in this section is based on the Canny edge 

detection algorithm, which uses a 7*7 window size for edge extraction. Each tile is 256*256 

pixels of RGB three channels. In order to ensure data consistency, the tests are all performed on 

the same tile, which is about 88Kb in size. The tile data is queried separately from HBase before 

each calculation. Therefore, the experiment can simultaneously test the I/O and computing 

performance of RSBDP. 
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Fig. 5 Runtime required to operate Canny 

edge detection algorithm with 7*7 window 

size with different task sizes 

 

Fig. 6 Runtime required to operate Canny 

edge detection through Spark with different 

numbers of nodes 

Fig. 5 shows the results in 3 cases, test on a normal machine, test on spark with one node and 

test on spark with 5 nodes. The single node is a machine with 8 cores and 16GB memory which 

is the same as the master machine of RSBDP prototype. For spark cluster, 2 cores and 2 GB 

memory is assigned for each spark task. It can be seen from the figure that even with a single 

node, Spark is more efficient than a single machine. Spark with 5 nodes requires much less time. 

For the test of 50,000 tiles (about 4.2G), normal machine takes about 227s while Spark with one 

node and Spark with 5 nodes need 160s and 35s separately. As is shown in Fig. 6, when treating 

10,000 tiles (about 860M), more computing nodes need much less time.  

4. CONCLUSION 

The explosive growth of RS data has spawned great requirements for RS big data technology. In 

this study, we explain a novel cloud-based RS big data processing platform, RSBDP, providing 

RS big data storage, high-speed queries and powerful computing capacities. Based on distributed 

file system, RS data are stored in both file system and NoSQL database for rapid queries with 

Quad-Tree and Hilbert index. Spark is applied as programing approach which is well combined 

with HBase. In future study, we will refine the platform and conduct more experiments with 

more data to evaluate the overall performance of the platform. 
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