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ABSTRACT: Parallel to the rapid technological advances, up-to-date remote sensing platforms and sensors have 
made it possible to observe the Earth's surface features at a higher spatial and spectral resolution. The WorldView-2 
(WV-2) imagery has been effectively used for the detailed mapping of agricultural crop-type types in many studies. 
The selected area for this study covers approximately 17 km2 of various agricultural land and forest areas. Hazelnut 
and corn products, which are spectrally similar crop types, are the most dominant and economically valuable 
agricultural products for this particular region. Therefore, accurate determination of these agricultural products and 
mapping of their spatial locations play important role for yield estimation. The primary objective of this paper is to 
map cultivated areas by classifying a WV-2 imagery using conventional classifiers and advanced ensemble learning 
algorithms. In addition, several spectral indices were used as an ancillary dataset to identify and differentiate 
cultivated areas and forest species from each other. Within this context, object-based image analysis (OBIA) with 
multi-resolution segmentation was performed to produce image objects. Then, a total of 22 image object subsets 
were determined for the segmented image objects. Four classification algorithms, namely Random Forest (RF), 
Canonical Correlation Forest (CCF), Decision Tree (DT), and k-nearest neighbor (k-NN) classifiers were applied to 
produce the thematic map of the study area. Result of the study showed that the CCF classifier reached the highest 
overall accuracy of 94% with dataset having 22 object subsets. The improvement in classification performance 
reached to 7% in terms of overall classification accuracy. Moreover, the results noticeably indicated that ensemble 
methods (i.e., RF and CCF) outperformed the DT and k-NN classifiers in terms of applied accuracy measures. The 
results were confirmed by the McNemar’s statistical test. Moreover, feature importance results of the RF algorithm 
showed that the most important vegetation indices were Chlorophyll RedEdge, green leaf, and NDVI-2 indices, 
respectively.  
 
1. INTRODUCTION 
 
Mapping cultivated areas using remote sensing technologies provides significant advantages in terms of cost and 
time required for traditional mapping methods. Satellite observations enable reliable and up-to-date data about the 
Earth's surface. The use of optical images has significantly contributed to determining crop products (Inglada et al., 
2015; Mokhtari et al., 2019). There has been an increasing amount of literature on the mapping of agricultural lands 
using satellite imagery with different spectral resolution (Immitzer et al., 2012; Belgiu and Csillik, 2018; Sonobe et 
al., 2018).  
 
The Worldview-2 (WV-2), the first commercial satellite having 2m spatial resolution with 8 multispectral bands, 
provides a great opportunity for cropland mapping thanks to its high spatial resolution and high revisiting time. It 
also provides an excessive contribution for monitoring agricultural fields due to its spectral bands covering the 
visible and NIR wavelength regions. 
 
Spectral indices, combinations of spectral measurements at different wavelengths, have been widely used as an 
ancillary dataset for accurate determination of crop product types (Ghebreamlak et al., 2018; Sonobe et al., 2018). 
There is a wide range of spectral indices in the literature to distinguish and identify vegetation and agricultural 
product types.  However, it is often not possible to use a large number of spectral indices together in the studies to 
be conducted. Furthermore, using more features than the optimum number may result in a decrease in accuracy 
achieved by the classifier, which is called ‘‘curse of dimensionality’ (Hughes, 1968). In general, data distributions 
in high-dimensional feature space have been found to cover a subspace of low dimensionality (Kavzoglu and 
Mather, 2002). Therefore, selecting features, which contributes to the highest separability between landscape 
features are essential for highest classification accuracy (Kavzoglu et al., 2018).  
 
Classification algorithms are also very important in determining the classification accuracies of cropland maps 
(Sonobe et al., 2018). In particular, the use of non-parametric classifiers instead of parametric classifiers has been 
found to give higher accuracy in agricultural product mapping (Kavzoglu et al., 2018; Kenduiywo et al., 2018; 
Numbisi et al., 2019). In addition, in recent years, ensemble learning algorithms have been successfully applied to 
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many remote sensing studies mainly focused on agricultural activities due to their robustness (Colkesen and 
Kavzoglu, 2017; Kenduiywo et al., 2018; Colkesen and Kavzoglu, 2019). 
 
The main idea of this research is to determine the potential use of WV-2 data for crop type mapping and the 
assessment of classification performances of Random Forest (RF), Canonical Forest (CCF), Decision Tree (DT), 
and k-nearest neighbor (k-NN) classifiers. 
 
 2. STUDY AREA AND DATASET 
 
In this study, a radiometrically corrected, geo-referenced, orthorectified WV-2 multispectral high-resolution dataset 
was used. The multispectral bands were pan-sharpened using the Gram-Schmidt algorithm to improve the spatial 
resolution of the image from 2 to 0.5 m and the resulting image is in the size of 8611x7825 pixels. The test site 
chosen for the study is the Ferizli district of Sakarya province located in the northwest of Turkey (Figure 1). The 
study area covers approximately 17 km2 agricultural region. The main crop production in the region is concentrated 
on corn and hazelnuts. Depending on the landscape structure of the region, eleven land use/cover (LULC) 
categories, namely, water, agriculture, corn, hazelnut, road, soil, building, concrete, barren, shadow and forest were 
determined. 

 
Figure 1. The location of the study site. 

3. METHODOLOGY 
 
In this study, a very high-resolution WV-2 imagery was classified using object-based image analysis (OBIA) with 
k-NN, DT, RF and CCF algorithms to produce detailed agricultural crop type map of the study area. In order to 
meet this purpose, the key processing steps of OBIA including image segmentation, classification of segmented 
objects and accuracy assessment were conducted, respectively. 
 
3.1. Image segmentation 
 
Image segmentation, which based on the creation of image objects, is the first and most vital process of OBIA. 
There are many segmentation algorithm and methods in the literature, which can be separated four main categories 
as thresholding, region-based, histogram image feature space clustering and edge-based segmentation (Cheng et al. 
2001). Multi-resolution segmentation (Baatz and Schäpe, 2000) is one of the most popular and commonly used 
segmentation algorithms (Kavzoglu et al., 2016; 2017; Kavzoglu and Tonbul, 2018). It contains three parameters 
namely, scale, shape, compactness.  
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3.2. Classification algorithms 
 
In order to classify segmented image segments with respect to their features, four classification algorithms 
including k-NN classifier, DT classifier and two advanced ensemble learning algorithms namely, RF and CCF were 
utilized. k-NN, known as a standard classification algorithm, has been widely used to solve many classification and 
regression problems in the literature (Liu et al., 2012; Mui et al., 2015). This method verifies the class label for the 
unknown sample based on its contiguous neighbor. In this method, it is assumed that the distribution in the set of 
points constituting the class control data is in the normal distribution. 
 
DT algorithm uses a multi-purpose or sequential approach to perform the classification process. This technique 
does not involve any statistical assumption, so it is considered a nonparametric classification approach. The basic 
structure of a DT consists of three basic parts called node, branch and leaf. In this tree structure, each attribute or 
feature is represented by a node. Thus, a set of rules is defined to implement the classification process. 
 
In order to apply above mentioned classic classification algorithms, two ensemble-based learning algorithms (i.e. 
RF and CCF) were also considered in this study. The RF algorithm, introduced by Breiman (2001) as a decision 
tree-based ensemble learning framework, has been widely used in the classification of remotely sensed imagery due 
to its success for discrimination of spectrally similar pixels belonging to different LULC classes (Kavzoglu and 
Colkesen, 2013; Colkesen and Kavzoglu, 2017). The main idea behind the algorithm is to construct multiple DT 
classifier using the different training datasets formed by applying bootstrap aggregation (i.e. bagging) and to 
estimate the class label of an unknown sample by combining their predictions. In order to improve the prediction 
accuracy of the RF, the CCF ensemble learning algorithm has been recently suggested by the Rainforth and Wood 
(2015). The main principle of the CCF is to create multiple DT classifier using the components estimated by the 
canonical correlation analysis ensuring the maximum correlation between the bands and the class labels (Colkesen 
and Kavzoglu, 2017; 2019). 
  
3.3. Performance Evaluation 
 
In this paper, as a standard process in image classification, classification results were evaluated using a standard 
error matrix to compute the overall accuracy and related statistics. Moreover, F-score measure was applied to 
conduct class-based performance evaluations. The F-score is the harmonic mean of precision (i.e. Producer’s 
accuracy) and recall (i.e. User’s accuracy) values. Furthermore, the McNemar’s test was performed to test the 
statistical significance of the difference in accuracies between the classifiers. It is a non-parametric test based on χ2 

distribution was calculated to compare the classification errors of classifiers. If the calculated test statistic is greater 
than the χ2 tabular value (i.e. 3.84 at 95% confidence interval), it is concluded that two classification results are 
statistically different. 
  
4. RESULTS 
 
In this study, OBIA with multi-resolution segmentation was performed to create image objects. It should be noted 
that the multi-resolution segmentation algorithm was performed in Definiens eCognition (9.1) software. The 
segmentation of WV-2 imagery was constructed by adjusting the user-defined scale, shape, compactness 
parameters and band weights. Based on a “trial and error” procedure, the multi-resolution segmentation parameters 
determined as 25-0.3-0.7 for scale, shape, compactness parameters, respectively. In addition, while all spectral band 
weights are set to 1, the two NIR bands were set to 2 due to its higher spectral effect on vegetation. At the end of 
the segmentation process, totally 308,460 image objects were created. In order to investigate the effects of the 
spectral indices of WV-2 image on the performance of object-based classification, 14 spectral indices given in 
Table 1 with their description, formulas and references were used.  

Furthermore, the RF algorithm was also applied to estimate the relative importance of the 14 spectral vegetation 
indices for the classification process. The resulting feature subsets were presented in Figure 2. As can be seen from 
the figure, the most important vegetation indices were Chlorophyll RedEdge (3.28), green leaf indice (3.13) and 
NDVI-2 (2.68) indices, respectively.  It should be noted that all indices were used in the classification process due 
to feature importance of all indices is greater than 0.5. 
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Table 1. Vegetation indices calculated from Worldview-2 data. 

Indices Formula Source 

NDVI-1 
NIR1-Red
NIR1+Red

 Tucker,1979 

NDVI-2 
NIR2-Red
NIR2+Red

 Tucker,1979 

Datt4 
Re
*Re

d
Green dedge

 Datt,1988 

Chlorophyll Green 1( )NIR
Green

−  Gitelson et al., 2006 

Chlorophyll vegetation index 2
Re2* dNIR

Green
 Vincini et al., 2008 

Enhanced Vegetation Index (EVI) 
 

2 Re2.5* (
( 2 6* Re 7.5* )

NIR d
NIR d Coastal

−
+ − +

 
Huete et al., 2002 

Chlorophyll Index RedEdge 
2 1

Re  
NIR
d edge

−  Gitelson et al., 2003 

Green Leaf Index 
 

2* Re
2* Re

Green d Coastal
Green d Coastal

− −
+ +

 Gobron et al., 2000 

Green NDVI (GNDVI) 
 

NIR2-Green
NIR2+Green

 Gitelson et al., 1996 

Green-Red NDVI 
NIR2-(Green+Red)
NIR2+(Green+Red)

 Wang et al., 2007 

Modified NDVI 
 

1 Re
1 Re 2*

NIR d
NIR d Coastal

−
+ −

 Main et al., 2011 

Red-Blue NDVI 
 

2 (Re )
2 (Re )

NIR d Coastal
NIR d Coastal

− +
+ +

 Wang et al., 2007 

Soil Adjusted Vegetation Index (SAVI) 
 

1 Re *(1.5)
1 Re 0.5

NIR d
NIR d

−
− +

 Huete, 1988 

Spectral Polygon Vegetation Index (SPVI) 
 

0.4*(3.7*( 1 Re ) 1.2*| ReNIR d Green d− − −

 Main et al., 2011 

 

 
Figure 2. Vegetation Indices feature importance using RF feature selection algorithm 
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In addition, the mean values of each spectral band of image were calculated in the segmentation stage separately. In 
the classification stage, two combinations were performed using only mean values of the spectral bands (i.e., 8 
subset) and using spectral bands and vegetation indices (i.e., 8+14=22 subset) together to compare the effect of 
vegetation indices on classification accuracy. Then, depending on the two spectral subset combinations, segmented 
images were classified using RF, CCF, DT, and k-NN classifiers. The accuracy results of all classifications with 
two subset combinations are summarized in Table 2.  

Table 2. Classification accuracies summary for all combinations and methods 

 8 subset F-score (%)  22 subset F-score (%) 
 CCF RF DT KNN  CCF RF DT KNN 

Agriculture 89.40 87.72 82.30 87.29  88.58 85.96 82.30 86.31 

Barren 95.13 89.78 86.09 90.99  96.60 92.22 86.09 90.72 

Building 93.99 93.40 88.22 92.91  96.37 95.09 88.22 91.71 

Concrete 95.29 94.22 93.62 92.64  94.92 92.68 93.62 92.86 

Corn 98.83 96.89 94.94 98.06  98.72 98.39 94.94 98.49 

Forest 90.77 84.61 81.11 83.74  91.32 87.05 81.11 85.50 

Hazelnut 95.74 89.10 87.53 88.92  95.90 91.86 87.53 90.65 

Road 93.28 91.91 89.83 90.60  93.78 91.38 89.83 90.99 

Shadow 86.77 88.11 84.66 82.01  90.08 89.84 84.66 84.15 

Soil 91.41 87.10 83.56 87.86  93.11 88.40 83.56 88.06 

Water 95.65 92.12 85.83 89.80  93.28 95.32 85.83 96.94 

OA (%) 93.89 90.36 87.41 89.81  94.55 91.95 87.56 90.87 
 
As can be seen from the table that the highest overall accuracies were produced by CCF classifier with 93.89% and 
94.55% for 8-subset and 22-subset combinations, respectively, whereas the lowest overall accuracies were 
computed by DT classifier with 87.41% and 87.56% for 8-subset and 22-subset combinations, respectively. 
Another important finding is that the CCF classifier helps to improve the classification performance up to 7% in 
overall accuracy compared to DT classifier. When the estimated F-score accuracies were analyzed, it was observed 
the highest accuracies were obtained for corn class by the CCF classifier with 98.83% and 98.72% for 8-subset and 
22-subset combinations, respectively. In addition, it was observed that the use of spectral indices provides a 
positive contribution to overall accuracies for all classification methods.  
 
To estimate the statistical significance of classification results, McNemar’s test was performed between all 
classifiers for two subset combinations (Table 3). It should be noted that statistical tests were conducted at 95% 
confidence (i.e. 3.84) interval.  

Table 3. McNemar’s test results for comparing classifier performances 

 
 

8-Subset 

 RF DT KNN 

CCF 52.28 122.30 59.25 

RF  29.61 0.93 

DT   15.26 
    

 
22-Subset 

 RF DT KNN 

CCF 49.34 152.10 63.05 

RF  69.55 6.61 

DT   32.90 
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As can be seen from the table, all classification results were found to be a statistically significant except for the 
pairwise result of 8-subset RF and KNN classifier. Furthermore, thematic maps of the study area produced by the 
CCF classifier for both subset combinations were given in Figure 3. It should be noted that the CCF classification 
was chosen for thematic map producing because it gives the highest classification accuracy for both subset 
combinations. When the produced thematic maps were analyzed, it can be seen that both subset combinations 
produced similar results and assigned mainly same LULC classes. In particular, the 8-subset approach failed to 
distinguish mainly shadow areas compared to 22-subset approach. 

 
Figure 3. Thematic maps produced (a) 8-subset, (b) 22-subset using CCF classifier 

 
5. CONCLUSION 
 
The purpose of the current study was to map cultivated areas using four classification algorithms, namely RF, CCF, 
DT, k-NN classifiers in the classification of WV-2 imagery. In particular, various spectral indices have been used to 
identify and distinguish different cultivated areas and forest species. For this purpose, OBIA-based multi-resolution 
segmentation algorithm was employed for the segmentation process. The produced image objects were classified by 
using two subset combinations, namely 8-subset, 22-subset datasets. The results of this investigation showed that 
the CCF classifier performed the most accurate results for two subset combinations. Also the use of spectral 
vegetation indices contributed positively to overall classification accuracies for each classification algorithm. The 
results also indicated that approximately 7% classification accuracy improvement was achieved when the CCF 
classifier was applied to the image compared to DT classifier. Furthermore, McNemar’s statistical test at 95% 
confidence interval confirmed that the difference in classification accuracy performance was statistically significant 
for all classification results except for between 8-subset RF and KNN classifier. Further studies are needed to 
determine the generality of the results of this study for different landscapes using various classification algorithms 
and spectral indices. 
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