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ABSTRACT: Two existing chlorophyll-a (chl-a) concentration retrieval procedures, which are 

analytical and empirical, are hindered by the complexity in radiative transfer equation (RTE) and 

in statistical analyses, respectively. For instance, the analytical model requires basic theory for 

understanding light propagation in the waters and underlying geophysical parameters which are 

difficult to obtain in most of the time, making the RTE is inaccurate; while the empirical model 

selects one best single-, dual-, or even triple- spectral band combination from many possible 

combination numbers to be regressed to chl-a concentration. Another promising model in this 

direction is the use of artificial neural networks (ANN). Mostly, a pixel-to-pixel with one-layer 

ANN model is used; where in fact that the satellite instrumental errors and man-made objects in 

water bodies might affect the retrieval and should be taken into account. In this study, the mask-

based neural structure, called convolutional neural networks (CNN) model containing both the 

target and neighborhood pixels, is proposed to reduce the influence of the aforementioned 

premises. The proposed model is an end-to-end multiple-layer model which integrates band 

expansion, feature extraction, and chl-a estimation into the structure, leading to an optimal chl-a 

concentration retrieval. In addition to that, a two-stage training is also proposed to solve the 

problem of insufficient in-situ samples which happens in most of the time. In the first stage, the 

proposed model is trained by using the chl-a concentration derived from the water product, 

provided by satellite agency, and is refined with the in-situ samples in the second stage. Eight 

Sentinel-3 images from different acquisition time and coincide in-situ measurements over Laguna 

Lake waters of Philippines were utilized to conduct the model training and testing. Based on 

quantitative accuracy assessment, the proposed method outperformed the existing dual- and triple- 

bands combinations in chl-a concentration retrieval. 

1.  INTRODUCTION 

Eutrophication refers to the degradation of water quality due to high increasing of phytoplankton 

biomass in the watershed. It occurs as the aquaculture pond managers intentionally adding 

fertilizers to reach their goals, that are to enhance primary productivity and to increase the density 

of important fish (Boyd and Tucker, 1998). Consequently, several aspects have been damaged 

recently, such as fish kills, human health, and even economic stability. Europe and USA suffered 

a huge economic losses caused by eutrophication amounting to approximately $1 billion per year 

and $100 million per year, respectively (Hoagland et al., 2012; Shumwey, 1990).   

Thus, long-term monitoring and real-time measurements of water quality play a critical role and 
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recently become worldwide growing concern regarding to the quality of water resources available 

for multiple resources (Barzegar et al., 2018). Collecting reliable water quality data is an important 

aspect of water protection and further can be used to better understand the type and severity of 

water quality impairments. Besides, the water quality monitoring is able to help decision-makers 

in setting achievable target for water quality improvement. 

Conventional approach, that is collecting and analyzing water samples in the professional 

laboratory, is time-consuming and demanding high cost. For instance, the approach can only 

represent in-water constituents, such as chlorophyll-a, colored dissolved organic matter (CDOM), 

etc., at only sampling stations. For the non-station water bodies, which are necessary for long-

term monitoring and management, are impossible to obtain (Hajigholizadeh, 2016).  

Since 1970’s, some researchers have proposed the use of optical remote sensing sensors attached 

on a satellite to overcome the challenges in conventional approach. This approach soon became a 

powerful tool that enabled researchers to monitor the in-water constituents in large-scale 

waterbodies without coming to the sites. A high number of studies has proposed in-water 

constituent retrieval by utilizing the satellite-derived products such as reflectance and radiance. 

Two primary retrieval methods are identified, that are empirical and semi-analytical, however, 

they are suffering complexity problem in statistical and radiative transfer analyses. Another 

potential method in this direction utilizes neural networks (NN) with multilayer perceptron. This 

approach is a powerful continuous model to fit multivariate, complex, and non-linear data. 

(Buckton et al., 1999), (Ioannou et al., 2011), (Ioannou et al., 2013) revealed the NN-based 

algorithms are known to be able to perform estimation of in-water constituents accurately, both in 

case 1 and case 2 waters. 

Generally, the empirical, semi-analytical, and NN-based method are in common using pixel-to-

pixel processing to retrieve in-water constituent concentration with no consideration of 

neighboring pixels. In fact, satellite images contain both surface reflectance and corresponding 

errors, including instrumental error. (González Vilas et al., 2011) used a median of 9-pixels mask 

around the pixel containing the exact geographical location of the sampling point to attenuate the 

previously mentioned error. This mask could also describe the pixels whether they are closer or 

further to the boundary of land and water bodies. The in-water constituent concentration near the 

shoreline has found to be much more than those which is more far away due to the existence of 

the farming areas and the water inlets surrounding the water body. Thus, the use of the mask is 

important in order to reduce the effect of instrumental error as well as to define the characteristics 

of water bodies. 

To overcome the problem of the statistical complexity and to attenuate the effect of instrumental 

error which arise in those previously-mentioned in-water constituent concentration retrieval 

methods, a deep learning technique with convolutional neural networks (CNN) architecture is 

adopted and proposed. The networks contain three important stages, that are band expansion, 

feature extraction, and chlorophyll-a concentration estimation. The three stages have different 

purposes, that are to cover bands combinations complexity, to describe water bodies 

characteristics, and to retrieve chlorophyll-a concentration, respectively. 

 

2.  STUDY AREA AND DATASETS 

Laguna Lake is one of the largest lake in Asia which is located in the southwest of capital city of 

the Philippines, Manila, with total area of 3,820 km2 (Figure 1). The lake features four distinct 

bays, that are, the West Bay, Central Bay, East Bay, and South Bay (Laguna Lake Development 
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Authority, 2013). The average depth is 2.8 m and the length of the shoreline is 220 km. More than 

100 rivers flow into Laguna Lake with only one output river, that is Pasig River, which is flowing 

waters to Manila Bay (Santos-Borja and Nepomuceno, 2006). 

 
Figure 1. Laguna Lake with tracking line of the seven campaigns 

2.1.  In-situ Chl-a Concentration Samples 

Field data collection campaigns were conducted in seven different days starting from November 

2018 to April 2019, covering wet season from June to November and dry season of other months 

(Maruyama, 2017). The Laguna Lake is divided into three regions, west, center, and east, covering 

west bay, central bay, and south & east bays, respectively, since it is impossible to cover the whole 

water bodies in only one campaign. An along-track chl-a data logger was installed on boat to 

measure chl-a concentration in each seconds. High number of chl-a concentration was recorded; 

however, several samples link to a pixel in Sentinel-3 imagery because of the image spatial 

resolution. Thus, an outlier removal and data aggregation were performed in the data pre-

processing; and Table 1 lists and summarizes the field campaigns in this study. 

Table 1. Summary of field campaigns 

Campaign # Date Season Region # of samples Chl-a conc. (μg/L) 

1st  November 6, 2018 Wet Center 69 6.8270 ± 0.8369 

2nd  November 14, 2018 Wet East 40 9.3660 ± 0.8668 

3rd  January 11, 2019 Dry East 35 11.3386 ± 0.5924  

4th  March 29, 2019 Dry Center 74 7.9063 ± 0.1646  

5th April 6, 2019 Dry East 48 8.4826 ± 1.2292 

6th April 26, 2019 Dry Center 22 7.2539 ± 0.3229  

7th April 30, 2019 Dry East 98 9.5975 ± 0.8220 

All samples 8.6391 ± 1.5383 

2.2.  Sentinel-3 Imagery 

Seven Sentinel-3 water full-resolution (WFR) level-2 images over the study area with the same 

acquisition dates with the field data collection campaigns were utilized. The images contain not 

only 16 atmospherically-corrected spectral bands, that is, Band 1-12, 16-17, and 20-21, but also 

two chl-a concentration channels built by inverse radiative transfer model – neural network 

(IRTM-NN) and OC4Me which based on the research and algorithm of (Bricaud et al., 1998) and 

(Morel and Maritorena, 2001). The input to the proposed CNN model is a patch of the size 7x7. 

Thus, there are 3058, 1712, 1008, 4715, 5681, 1809, and 2582 patches linking to the cloud-free 

and shadow-free samples in the seven campaign, respectively. The patches containing non-water 

pixels are excluded from the dataset.  
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3.  METHODOLOGY 

3.1.  Proposed CNN Model 

A convolutional network design, namely CNN model, is chosen and proposed in this study, which 

is containing three stages: band expansion, feature extraction, and chl-a estimation; which have 

different purposes which mainly focusing on covering some problems occurred in the remote-

sensing approach for chl-a retrieval such as empirical-, analytical-, and ANN-based models. The 

input to the proposed CNN model is 16-band Sentinel-3 sub-image, excluding spectral band 

number 13-15 and 18-19 as explained in Section 2.2. The spatial size of the patch image is 7x7 

which center and its surrounding pixels belong to water bodies. As for output, the model produces 

the estimation of chl-a concentration in the center pixel only. This indicates that the model is an 

image-to-pixel modelling. In order to consider both spectral and spatial information, 3-D filter 

mask design is utilized instead of 2-D. Figure 3 illustrates the network structure of the proposed 

CNN model for chl-a concentration retrieval. As a result, there are 4753 unknown parameters 

within the proposed CNN model and their breakdowns are explained in the next paragraphs. 

 
Figure 3. Network structure of proposed model 

Band expansion stage. This stage aims to defeat the problem arise in the empirical- and 

analytical-based models where the complexity was occurred in both approaches. It attempts to 

deepen the depth of spectral information by combining the spectral bands by means of a set of 

three 1x1x3-sized filter masks. Each filter mask, combined with bias, utilizes rectified linear unit 

(ReLU) function for activation function and then followed by batch normalization to further 

maintain the mean and standard deviation of the activation close to 0 and 1, respectively. There 

are 24 unknown parameters within the first stage; 12 is covering the number of weights and biases 

in the filter masks while the other makes up the values of mean, standard deviation, shift, and 

scaling in batch normalization. Moreover, as no padding is necessary, a single filter mask yields 

14 feature images with similar spatial size to the input; meaning that, with three filter masks, 42 

7x7-sized feature images are obtained. 

Feature extraction stage. This stage contains two convolutional layer in which one layer attempts 

to reduce the effect from the instrumental errors while the other is for in-water object detection. 

In the first layer, ten filter masks are utilized with size of 3x3x42, producing 10 feature images 

after conducting activation function and batch normalization with similar adjustment to the first 

stage. The spatial size of the feature images in the first layer is 5x5. Moreover, the second layer 

utilizes five filter masks where each filter mask is sized 3x3x10. The adjustment of activation 

function and batch normalization is similar to previous layer. The products within this layer are 

five feature images of the spatial size 3x3. In total, there are 4,305 unknown parameters within 

this stage; covering 3,830 unknown parameters in the first layer and 475 unknown parameters in 
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the second layer. 

Chl-a estimation stage. Different to the previous two stages, this stage contains flattening layer 

to reshape 3-D image to a 1-D vector information. As the feature images from previous layer in 

the second stage is sized 3x3x5, the vector contains 45 different information. The vector 

information is connected to a hidden layer with 9 neurons and then the information in the hidden 

layer is used to estimate chl-a concentration at the center pixel of the patch in output layer. A 

sigmoid function is used for activation function in both hidden and output layers. In total, there 

are 424 unknown parameters covering the values of weights and biases connecting the vector 

information to hidden layer and hidden layer to output layer. 

3.2.  Proposed Two-stage Training 

In order to cover the problem of insufficient samples in model training, a two-stage training is 

proposed in this study. In the first stage, the proposed CNN model is pre-trained by using chl-a 

concentration derived from existing retrievals. There are two candidates of retrieval, that are 

IRTM-NN and OC4Me which are included in Sentinel-3 WFR images. The two candidates are 

then compared to in-situ chl-a concentration samples, and for one which has a better accuracy in 

terms of root-mean-squared-error (RMSE) and coefficient of determination (R2) is utilized in the 

first stage. As in the next stage, the in-situ chl-a concentration samples are classified into 2 groups, 

one for training samples and the other for testing samples. The in-situ training samples are used 

to train and refine the pre-trained model, and then the refined model is performed to the in-situ 

samples to check the performance. In addition, as the chl-a concentration from in-situ, IRTM-NN, 

and OC4Me have different range, a standardization by means of mean and standard deviation was 

performed to each.  

Hyper-parameter adjustment. For training the proposed model, Adam optimization algorithm 

which derived from adaptive moment estimation is utilized for weight update. The algorithm 

combines the advantage of AdaGrad and RMSProp optimization algorithms by adapting the 

learning rates which based on both the average first moment and second moment of gradients 

(Kingma and Ba, 2015). It is able to handle large datasets and high-dimensional unknown 

parameter spaces with only little memory requirement. The parameters in the Adam optimization 

algorithm were tuned following the default in Keras. Moreover, mean-squared-error (MSE) was 

selected as the loss function. In addition to prevent the problem of overfitting, dropout and L2 

regularization in kernel were used. The dropout removes out some neurons temporally when 

computing the loss function while L2 regularization penalizes larger weights by adding Frobenius 

norm to the loss function. The two regularizations were tuned respectively to 0.5 and 0.001 

(learning rate). 

4.  RESULTS AND DISCUSSIONS 

4.1.  Existing Retrieval Model for Pre-training 

The estimated chl-a concentration from IRTM-NN and OC4Me channels which collocated with 

in-situ stations were extracted and compared to in-situ chl-a concentration. The two channels 

performed slightly similar in each campaign, around 7 mg/L and 0.2 in terms of RMSE and R2 

respectively, as shown in Table 3. Here, considering the RMSE, the estimation from IRTM-NN 

channel was selected and will be utilized in the pre-training part of the proposed two-stage 

training.  

 

5



 

 

 

 

 

 

 

Table 2. Performance comparison of IRTM-NN and OC4Me channel 

Campaign # 
RMSE R2 

IRTM-NN OC4Me IRTM-NN OC4Me 

1st  5.5757 5.7412 0.0031 0.0827 

2nd  8.0890 8.2377 0.4320 0.3876 

3rd  10.0080 10.3608 0.2106 0.1405 

4th  6.5910 6.9167 0.2411 0.3480 

5th 7.2506 7.6134 0.3191 0.4984 

6th 6.1087 5.8565 0.0166 0.0878 

7th 8.4196 8.5385 0.3790 0.4966 

Average 7.4347 7.6092 0.2288 0.2917 

4.2.  Proposed Model Performance 

In this study, the datasets from dry season are used to training the proposed CNN model, which 

are from the 3rd to the 7th campaigns. Meanwhile, datasets from the other campaigns are used for 

testing. In this section, the proposed model is trained with the proposed two-stage training and 

compared to a training with one stage only, that is using estimation from IRTM-NN channel. 

The performance evaluation reveals that the use of IRTM-NN channel in pre-training and in-situ 

chl-a concentration in refinement are able to result a more accurate chl-a concentration estimation. 

As shown in Table 3, the proposed model with two-stage training was applied, had a lower RMSE 

and higher R2 value than with one-stage only was applied, both in training and testing datasets. 

This means that the two-stage training was able to enhance the estimation accuracy of chl-a 

concentration estimation. 

Table 3. Performance comparison of proposed model with and without proposed two-stage 

Campaign # 
RMSE R2 

Two-stage One-stage Two-stage One-stage 

1st  2.6561 3.7352 0.0523 0.0305 

2nd  0.8772 1.3982 0.3907 0.3915 

3rd  1.9082 1.0453 0.0842 0.1308 

4th  0.2988 2.5705 0.6541 0.1167 

5th 0.8989 2.3315 0.5946 0.2538 

6th 2.1647 2.8652 0.1757 0.2719 

7th 0.6688 1.1856 0.5128 0.1125 

Average 1.3533 2.1616 0.3521 0.1868 

4.3.  Proposed Model vs Existing Chl-a Retrievals 

The proposed CNN model with two-stage training was applied, was compared to existing chl-a 

concentration estimation which corresponds to 3-band model from (Gitelson et al., 2008), 2-band 

model from (Moses et al., 2009), and normalized differentiate chlorophyll-a index from (Mishra 

and Mishra, 2012), where the regression coefficients of the three existing models were tuned 

according to the training datasets (see Table 4). 
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Table 4. Existing model and regression coefficients tuning 

Model name Chl-a model a1 a0 

3-band model [Rrs
−1(665) − Rrs

−1(709)] × Rrs(754) 2.5145 8.7236 

2-band model [Rrs(709) × Rrs
−1(665)] 0.9880 7.7688 

NDCI [Rrs(709) − Rrs(665)]/[Rrs(709) + Rrs(665)] -3.0256 8.7044 

Table 5 summarizes the performance of the three existing chl-a concentration retrieval models. 

Compared to them, the proposed model is, in overall, able to estimate a better accuracy of chl-a 

concentration estimation, in terms of RMSE and R2. However, the performance evaluation in the 

1st and 6th campaign of the proposed model had lower RMSE than the three existing retrievals. As 

for the 6th campaign evaluation, even the RMSE of proposed model was lowest, the difference was 

insignificant. This means that the performance evaluation in this campaign was similar between 

the four. Hence in the 1st campaign evaluation, the in-situ chl-a concentration between this 

campaign dataset with training datasets was found to be different (see table 1). Broadly known 

that NN attempts to learn and to fit the training dataset. Thus, the different in term of range of in-

situ chl-a concentration between the 1st campaign dataset and the training datasets might make the 

proposed model to retrieve the chl-a concentration unsuccessfully. 

Table 5. Performance comparison of existing chl-a retrieval 

Campaign 

# 

RMSE R2 

3-band 2-band NDCI 3-band 2-band NDCI 

1st  2.2423 2.2703 2.2866 0.3045 0.3173 0.3220 

2nd  0.9263 0.9191 0.8985 0.6013 0.5912 0.6121 

3rd  2.5942 2.5678 2.5900 0.0209 0.0160 0.0169 

4th  0.8801 0.9106 0.8810 0.0182 0.0059 0.0062 

5th 1.2107 1.2292 1.2093 0.6468 0.5761 0.5726 

6th 2.1129 2.1312 2.1619 0.0006 0.0001 0.0103 

7th 0.7858 0.8095 0.7843 0.3349 0.3980 0.4506 

Average 1.5361 1.5482 1.5445 0.2753 0.2721 0.2844 

5.  CONCLUSION AND FUTURE WORKS 

A CNN model for chl-a concentration retrieval was proposed in this study. The model contains 

three stage, that are band expansion, feature extraction, and chl-a concentration estimation. The 

three stage allowed the model to cover specific problems of statistical complexity, satellite error, 

and estimation, respectively. In addition, a two-stage training, taking the use of Sentinel-3 WFR 

channel, that is IRTM-NN channel, and in-situ chl-a concentration, was also proposed. The result 

revealed the capability of the proposed model with two-stage training in estimating the chl-a 

concentration in the seven campaign with a good accuracy in terms of RMSE and R2. Moreover, 

the proposed model was compared to existing chl-a concentration estimation from (Gitelson et 

al., 2008), (Moses et al., 2009), and (Mishra and Mishra, 2012). This might be happened because 

of that the range of in-situ chl-a concentration between the 1st campaign dataset and the training 

datasets is different to each other, which may lead to an inconsistent estimation. Other than that, 

the proposed CNN model was able to outperform the three existing retrievals. In the future, a 

multiple output would be inserted into the model, where the output is not only chl-a concentration, 

but also other water quality parameters such as colored dissolved organic matter (CDOM), total 

suspended solid/matter (TSS/TSM), etc.  
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