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ABSTRACT: The present work deals with the satellite based monitoring of agriculture, and 

specifically using Sentinel data, for the purposes of food security monitoring in South Korea. 

South Korea’s food security concerns have to do with the overproduction of rice and the low 

self-sufficiency in the production of other major grains. For this reason the systematic and 

large scale monitoring of the paddy rice extent has been identified as key knowledge for the 

high-level decision-making in regard to food security. This work addresses the Big Data 

implications, derived from a large scale and high-resolution paddy rice mapping application.  

In this regard, a distributed Random Forest classifier has been implemented, using the cluster-

computing framework Apache Spark in a High Performance Data Analytics environment. 

The input data to the classifier comprise of long time-series of Sentinel-1 and Sentinel-2 

images, but also pertinent vegetation indices. The proposed paddy rice classification method 

achieves an accuracy of more than 85%, for a study site in Northwestern South Korea.  

 

1. INTRODUCTION 

 

Over the next decades, the estimated increase in the global population, combined with the 

climate change, is anticipated to have a significant impact on the food sector (Fritz et al., 2013). 

Earth Observation (EO) driven agriculture monitoring, for the purposes of food security, control 

of the implementation of sustainable agriculture policies and the improvement of the overall 

agricultural productivity, is a top priority for the European Union, but also global initiatives 

such as GEOGLAM and Asia-RiCE.  

Paddy rice is a primary crop in South Korea, which is the area of interest for this study, and 

information about its spatial distribution and yield is of great importance for the environmental 

management, but also for food security related decision-making. South Korea, although of high 

food security index, has low food self-sufficiency that is decreasing in the long term. The 

country can be considered exposed to potential food security issues due to its high dependency 

on international supply for major crops and limited number of exporting countries for rice. 

The monitoring of paddy rice extent and its overall production requires manual field visits for 

survey and is thus costly and time consuming, when compared to information gathered through 

EO means. Remote sensing is one of the most effective technologies to map the extent of crops. 

Rice area mapping at the parcel, regional and national scale has been extensively studied in the 

past, through several approaches, including mono-temporal and multi-temporal classification 

schemes that utilize both optical and microwave - Synthetic Aperture Radar (SAR) data (Qin et 

al., 2015; Nguyen et al., 2015). Tian et al. (2018) have introduced a novel multi-season paddy 

rice mapping method, using Sentinel-1 and Landsat-8 data under a k-means unsupervised 
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classification methodology. Torbick et al. (2017) have produced an updated land cover map, 

including the rice class, fusing Sentinel-1, Landsat-8 OLI and PALSAR-2 data using a Random 

Forest classifier. Finally, Pazhanivelan et al. (2015) have introduced a robust rule-based 

classification for mapping rice area with multi-temporal, X-band, HH polarized SAR imagery 

(COSMO Skymed and TerraSAR X), with site-specific parameters. 

There have been multiple studies to exploit both optical and SAR data for the monitoring of 

agriculture, with a lot of research on the usage of Sentinel data, utilizing their unprecedented 

characteristics in temporal and spatial resolution (Inglada et al., 2016; Immitzer et al., 2016; 

Sitokonstantinou et al., 2018). Studies have used multiple classification techniques including 

neural networks, supervised and unsupervised machine learning techniques, but also custom 

rule-based systems. Nevertheless, all studies had to manually collect their training and 

validation samples, undermining the design of a fully transferable and site independent 

framework of application for the described systems. 

In this regard, and under considerations of scalability, reproducibility and transferability, which 

are essential for a national scale application, it was decided to design a more dynamic rice 

monitoring system that is largely independent of hard-to-attain non-EO information. In this 

work we suggest a land cover map update mechanism based on change detection to produce 

appropriate training and validation datasets for any given year of inspection via utilizing older 

ground truth information. The updated land cover map is then used to train a distributed 

Random Forest classifier in a High Performance Data Analytics (HPDA) environment.  

The recent and unprecedented availability to high resolution satellite imagery, such as the 

Sentinels, has introduced a paradigm shift in the field of remote sensing. Increasing number of 

satellites and sensors along with improved spatial and temporal resolution generate big EO data 

that demand increased computational power for their exploitation (Chebbi and Boulila, 2015). 

To accommodate for the storage and processing requirements, in this new era of EO science, 

decentralized and distributed environments and frameworks are utilized. High Performance 

Computing (HPC) combines technologies such system software, architecture and algorithms in 

order to increase the effectiveness and the speed of complex processing chains. Distributed 

processing is part of this umbrella technology. It makes use of parallel processing on multiple 

machines so that the data are distributed to the entire memory of the system.  

Remote sensing research has been enhanced in recent years by high performance computing 

(Lee et al., 2011).  Alongside with the infrastructure, several computing frameworks have been 

developed, which promise more effective and efficient image processing. Apache Hadoop is one 

of the most famous implementations of the MapReduce model, introduced by Dean and 

Ghemawat (2004). Apache Spark, an alternative framework, has advantages over Hadoop when 

it comes to speed, memory and high level operators, making it the best choice for big data tasks 

(Jai and Atul, 2016) and the chosen framework for this work.  

 

2. AREA OF INTEREST AND DATA ACQUISITION 

 

2.1 Area of Interest 

 

The area of interest for this study comprises of the South Korean regions of Dangjin and Seosan. 

The two areas are recorded as the highest rice producing in the country (Park et. al, 2018). The 

annual mean temperature and precipitation in the region are 11.4 °C and 1158.7 mm, 

respectively (Kim et. al, 2017). South Korea has a rainy season during the summer due to the 

Asian Monsoon, therefore cloud free optical imagery is scarce. For this reason, weather 

independent SAR imagery from Sentinel-1 has also been exploited in the suggested methods of 

this study. The figure below illustrates the area of interest for which an accurate paddy rice map 

has been produced. 
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Figure 1. Area of interest located in the regions of Dangjin and Seosan in South Korea 

2.2 Data acquisition 

 

The training and validation data for the paddy rice classification algorithm stem from past land 

cover maps for the areas of Dangjin and Seosan in South Korea, as retrieved from the Korean 

Ministry of Environment database. Detailed land cover maps at the parcel level, distinguishing 

between rice and non-rice cultivations, are produced every few years. However, in order to 

systematically produce rice maps for any given year, updated land cover maps are required for 

the appropriate training and validation of the machine learning algorithms utilized. In this study 

the year of inspection is 2018, but the latest land cover maps for the area of interest were from 

2015. For this reason, a framework has been developed for updating, through EO assisted 

change detection, the land cover map of year 2015 (reference map) for the South Korean regions 

of Dangjin and Seosan to reflect the reality of the year inspection (updated map).  

Secondly, the input dataset for the paddy rice classification algorithm comprises of a time-series 

of Sentinel-1 and Sentinel-2 imagery to capture the entirety of the crop’s phenology. For the 

creation of the pixel based feature space, monthly means of VV backscatter from Sentinel-1 

images, along with Red-edge, Near Infrared (NIR) bands and Vegetation Indices (VIs) from 

Sentinel-2 images, were used as features. The VIs incorporated in the feature space include the 

Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI) 

and Plant Senescence Reflectance Index (PSRI), which have been widely used in crop 

monitoring and crop mapping applications (Lebourgeois et al., 2017; Sitokonstantinou et al., 

2018; Gao, 1996; Hatfield  and Prueger, 2010). The resolution of the time-series of imagery is at 

10 m and amounts to several tens of gigabytes of feature space, which is comprised of a total of 

167 features. The figure below illustrates how the satellite image acquisitions capture the 

different phenological phases of rice in South Korea.  
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Figure 2. South Korea paddy rice phenology and the respective Sentinel-1 and Sentinel-2 acquisitions that capture it 

The recent and unprecedented availability of open access high resolution satellite imagery, such 

as the Sentinels, has introduced a new era in the field of remote sensing. However, the 

automated and timely acquisition of Sentinel imagery from the plethora of available hubs 

becomes challenging. The different hubs offer Sentinel data with different specifications, such 

as their rolling archive policy, data availability, geographic coverage and latency of acquisition. 

Thus, an application has been developed to connect to multiple Sentinel hubs and automatically 

search for the pertinent Sentinel data. This broker of Sentinel data retrieves the requested 

products from the most efficient hub that is decided in terms of download speed and product 

availability. The overall architecture of this Sentinel hubs broker is shown in the figure below.  

 

 

Figure 3. The federated Sentinel hubs API overall architecture 

3. METHODS 

 

3.1 Change Detection: Land cover map update 

 

The output product of the below methodology does not attempt to accurately classify rice 

fields for the year of inspection but merely delete changes in the land cover map of 2015 

(reference map), as described in the Area of Interest and Data Acquisition section. Therefore, 

using only the rice pixels from the reference map we eliminate outliers to produce the updated 

map for the year of inspection. This way the training dataset for the distributed Random Forest 

classifier is refined, by removing rice pixels of changed land cover. 
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Figure 4. Framework of land cover map update method 

Figure 4 illustrates the workflow for the land cover map update methodology. The processing 

chain starts by taking the difference of the VH polarized backscatter of Sentinel-1 images in 

mid-June of 2015 and 2018, respectively. VH polarization is especially sensitive in the water 

concentration of inundated rice fields. Imagery sensed in mid-June was selected, as it is the 

period that rice fields are flooded and thus more easily detectable. The preprocessing of 

Sentinel-1 imagery involved calibration, speckle filtering and terrain correction. The two 

images have been additionally co-registered in order to ensure one to one pixel match. 

From the difference product of the two VH backscatter images we record only the pixels of 

extreme differences, using the values of bottom 2% and top 98% of the cell data range as 

thresholds. Then raster polygons smaller than 50 pixels are replaced with the pixel value of the 

largest neighbor polygon, thus eliminating island pixels and filling raster polygon holes. The 

remaining outlier pixels are superimposed with the rice pixels of the reference map, keeping 

only matching records. Hence, we end up with a set of pixels identified as rice in the reference 

map that appear changed for the year of inspection, as illustrated in the following figure. 
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Figure 5. Unrefined outlier detection product 

To further refine the product illustrated above, it was attempted to fill in missing pixels within 

the identified non-rice parcels. A raster proximity map was generated to indicate the distance 

from each pixel to the nearest pixels identified as an outlier. Then pixels that haven not yet been 

identified as outliers and have a distance of fewer than 5 pixels from outlier pixels are recorded 

(B in Figure 4). Product C in Figure 4 refers to an automated water detection map via 

thresholding, based on the VH backscatter, sensed in mid June of the inspection year. Since rice 

is inundated the algorithm also works for identifying the flooded agricultural land.  

 

Figure 6. VH backscatter 2018 water mask via thresholding 

Finally, product D in Figure 4 refers to rice pixels of the reference map. Combining products 

A-D under the Boolean expression in Figure 4, we record all outlier pixels of the unrefined 

detection product (Figure 5), but also pixels that are concurrently not included in the threshold 

based water mask and have a proximity value of fewer than 5 pixels (Figure 6). The final 

product is illustrated in Figure 8 in the Results section. 

 

3.2 Distributed Random Forest 

 

Food security monitoring at the national scale demands time series analysis of multiple 

satellite images, so as to capture the crop’s phenology. It becomes apparent that the size of this 

dataset, which is several tens of gigabytes, exceeds the memory limits of conventional 
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machines. To overcome this limitation, distributed architecture and parallel data processing 

had to be introduced. From the storing point of view, the Hadoop Distributed File System 

(HDFS) is used to store large amounts of data (Ruzgas et al., 2016) giving the potential of 

breaking down the dataset to separate blocks and distribute them to the multiple nodes of the 

cluster. Moving on to the processing of the dataset, Apache Spark reads the distributed pixel-

based feature space from HDFS in the form of dataframes and transforms them into Resilient 

Distributed Datasets (RDDs), a read-only, partitioned collection of records, which allows for 

transformations and actions, such as filtering and sorting. Afterwards, data are prepared for the 

classification process by randomly splitting them into training and test subsets, with a split 

ratio of 30/70.  

Considering the need of efficient and fast data analysis for this oversized dataset, an optimized 

and scalable machine learning algorithm was used to exploit the power of distributed 

computing. The distributed Random Forest implementation comes with MLLib, a library of 

Apache Spark. The Random Forest algorithm is an ensemble classifier based on the decision 

tree model. Training data are split into k different subsets, using the bootstrap method, and 

each subset creates a new decision tree. Finally, a forest is constructed from the different 

decision trees and predictions are made through a majority voting mechanism (Breiman, 2001). 

The algorithm was parameterized to have 10 decision trees, a maximum tree depth of 30 and a 

maximum number of bins set to 32. The overall architecture of the system is depicted in Figure 

7. The overall architecture of the distributed Random Forest classification 

 

 
Figure 7. The overall architecture of the distributed Random Forest classification 
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4. RESULTS 

 

4.1 Change Detection: Land cover map update 

 

The figure below (Figure 8) illustrates the final refined outliers detection output at the top left 

corner. Rice fields based on the reference map and the unrefined outlier detection products are 

also shown for visual comparison. 

 

 
Figure 8.Top left - refined outliers detection, top right – unrefined outliers detection, bottom left – true colour 

composite September 2018, bottom right – rice pixels based on the reference map 

The illustrated figures throughout this section represent an indicative snapshot of the area of 

interest. The method was tested in a total area of 7,185 ha of paddy rice. The detected outlier 

pixels amounted to 396 ha, therefore resulting in a 5.5% change. This percentage does not only 

refer to rice parcels that altered to other than rice cultivations in 2018, but also pixels on the 

parcel borders that were classified as rice due to less than optimal parcel digitization of the 

reference map. This further refines and removes noise from the training dataset. 

 

4.2 Paddy rice classification 

The classification performance was assessed based on the metrics of recall, precision and F1-

score, computed as shown in Equations (1)–(3). Recall is the ratio of correctly classified pixels 

over the total number of pixels for a ground truth class. Alternatively, precision is the ratio of 

correctly classified pixels for a given class to the total number of pixels predicted to belong to 

that class. F1- score is the harmonic mean of precision and recall (Sokolova and Lapame, 2009). 

The metrics were computed based on the below confusion matrix. Rice is considered as the 

positive class and non-rice as the negative class.  

Table 1. Confusion matrix of paddy rice classification 

 
Prediction Rice Prediction Non-Rice 

Truth Rice 4,151,744 616,558 

Truth Non-Rice 697,320 19,547,543 

                                                      𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃)   (1) 
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                                              𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁)  (2) 

                         𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)  (3) 

where TP is the number of correctly classified rice pixels or True Positive, FP is the number of 

non-rice pixels classified as rice or False Positive, TN the number of correctly classified non-

rice pixels or True Negative and FN is the number of rice pixels classified as non-rice or False 

Negative.  
Table 2. Accuracy metrics for the Random Forest classification 

Precision (%) Recall (%) F1 – score (%) 

85.62 87.07 86.34 

96.90 96.50 96.70 

 

The results are very promising, with more than 85% precision and recall for the paddy rice 

class. It should be noted that the above accuracy metrics are computed against the updated map, 

as described in the Methods section, and not a validated dataset. The validity of the updated 

map is thus assumed for training and validation, even though it is not perfectly representative 

of the truth. The dataset does not account for the new rice cultivations in the year of inspection 

that were described as non-rice cultivations in the reference map, as the change detection 

method only removes outliers from the latter. For this reason the actual precision values are 

expected to be slightly higher than the ones indicated. 

 

5. CONCLUSIONS 

The distributed Random Forest implementation in the HPDA environment accommodates for 

the big EO data and allows for the large scale pixel-based paddy rice classification. The 

regional application presented in this work can be linearly scaled up for the entire country, 

providing an accurate indication of the total paddy rice extent. The classification product can 

then be used for the estimation of yield, providing essential information for food security and 

enabling high level decisions at the national scale.  

The exploitation of exclusively freely available data, along with the employment of big data 

technologies, such HDFS and Apache Spark, but also big data infrastructure, such as the 

HPDA, constitutes the suggested rice monitoring scheme a scalable and transferable solution. 
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