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ABSTRACT: Human activity is one of the dominated driving forces for global warming, in 

particularly in the urban areas. The temperature within the urban areas is higher than that of the 

surrounding rural area, this phenomenon is known as Urban Heat Island Effects (UHIE). In this 

study, a Land-use Regression (LUR) approach was applied to estimate air temperature based on 

ambient land-use/land cover allocations, and then to assess the spatial-temporal variability of 

UHIE intensity in six metropolises of Taiwan. The study materials included in-situ observations 

of air temperature from 2000 to 2016, landmark database, digital road network data, National 

land use inventory, MODIS NDVI datasets and thermal power plant distribution database. The 

Spearman correlation coefficient and stepwise regression were employed to develop the 

prediction model. Variables with the erroneous direction of correlation, high collinearity 

(VIF>3) and p-value>0.1 were eliminated out during the variable selection procedures. Model 

robustness was verified by 10-fold validation and external data verification. The results showed 

that, with the adjusted R
2
 of 0.87, a 10-fold cross validated R

2
 of 0.87, and an external data 

validated R
2
 of 0.92, the high explanatory power of the resultant model was confirmed. 19 

variables related to green spaces, culture activities, road, traffic and transportation, and industry 

were selected as important predictors variables in the developed model. Finally, UHI intensity 

calculated from the resultant model showed that, Taichung City had the highest level of UHI 

intensity (4.6℃) among the six cities, and then followed by Kaohsiung City (1.8℃), Taoyuan 

City (3.3℃), New Taipei City (2.6℃), Tainan City (1.3℃), and the level of Taipei City (0.9℃) 

was the lowest. Regardless the location, only minor variations were observed among the 

studied 17 years, indicates more efforts were needed for heat mitigation. 

 

 

1. INTRODUCTION 

 

The global warming have a great impact for environmental health(Hansen et al., 2008; Berry et 

al.,  2010; Vida et al., 2012; Williams et al., 2012; Wang, et al., 2014; Ding et al., 2016).From 

1880 to 2012, the global average temperature has increased by 0.85 °C(IPCC, 2014). In most 

areas, people will experience more high temperature environment and affect health (Basu and 

Samet, 2002; Basu, 2009; Ye et al., 2012). Human's activity will promote global warming, in 

particularly in the urban areas. This in turn creates an urban heat island effect(UHIE).UHIE  

refers to the situation where the average temperature of the atmosphere and the surface of the 

metropolitan area is higher than that of the neighboring suburbs or natural covered land 
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(Smoyer-Tomic et al.,2013, Lu et al., 2016). 

Land-use Regression (LUR) can better serve small spatial variability of long-term outdoor air 

pollution (Pan et al., 2016; Wu, et al., 2017; Hsu et al., 2018; Hsu et al., 2019), so it is often 

used to simulate pollution concentrations. Remote sensing can provide large-scale and multi-

temporal surface information for various purposes like forest greenness assessment (Wu et al., 

2014). But besides examining UHI effects, they were rarely used to predict temperature (Chen 

et al., 2006; Tomlinson et al., 2011; Wu et al., 2013; Singh et al.,2017). Because the remotely 

adapted data does not represent the atmospheric temperature, it can only represent the surface 

temperature. Moreover, the application of remote sensing methods to estimate the nationwide 

UHI effect will also face the problem of missing data. Therefore, by coupling LUR to remote 

sensing technology, this combination can be used to better estimate spatiotemporal temperatures. 

Geographic Information System (GIS) technologies can provide flexible environments for 

collecting, storing, displaying, and analyzing the distribution of variables (Demers, 2005; Wu et 

al., 2018)to develop LUR models, such as artificial cement facilities that cause elevated 

temperatures (Liu and Zhang, 2011) or Green space that reduces temperature and UHI effects 

(Yuan and Bauer,2007;  Corburn, 2009; Ahmed et al., 2015). 

The Taiwan Central Meteorological Bureau has established more than 300 weather stations, 

but it is still not enough to study the spatial and temporal resolution of high temperatures, such 

as the UHI effect. Therefore, this paper aims to develop a model that can estimate the temporal 

and spatial variation of temperature. Based on 18 years of temperature observations at 377 

stations in Taiwan, we used the LUR model to study high temperature resolution. In addition, in 

order to improve the accuracy of this modeling, we further use the number of temples and 

crematoriums and the Normalized Difference Vegetation Index (NDVI) as variables to assess 

whether plant growth vegetation cover or incense paper and incense burning Will affect the 

temperature. This article will show how to apply remote sensing to temporal and spatial 

variations in temperature and further UHI effects. 

 

2. METHODS 

 

2.1 Study Area and Material 

 

Taiwan is located in South East Asia with a total population of 23 million (Central Intelligence 

Agency, 2018). 78.2% of the population lives in urban areas, and the urbanization rate increases 

by 0.8% annually. In addition to traffic emissions (Liu and Zhang, 2011), the unique temple 

culture caused by incense paper and incense and fast-fried restaurants is also one of the reasons 

(Kuo et al., 2015; Yu et al., 2015). 

 

Our research on UHI intensity (UHII) focuses on the six most populous areas in Taiwan (local 

government law, 2016), such as Taipei City with a population of 2.6 million, New Taipei City 

with a population of 3.9 million, and population of 2.8 million in Taoyuan City. The population 

of Taichung City is 2.2 million, the population of Tainan City is 1.9 million, and the population 

of Kaohsiung City is 2.8 million. The highest population density in Taipei is the six major cities 

(9791 people/km2), followed by New Taipei City, Taoyuan City, Taichung City, Kaohsiung 

City and Tainan City. We use the township with the smallest proportion of artificial cement 

facilities as a reference to calculate the UHI of each city. 

 

2.2 Weather database 
 

Taiwan’s Central Weather Bureau established 377 weather stations until 2017 to systematically 

monitor meteorological data throughout the island. We calculated the annual average of the 

temperature data collected by the weather station and developed the LUR model with 3467 
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measurements as the dependent variable. The data from 2000 to 2016 was used for model 

development and the 2017 data was used for external validation. As the number of stations 

increases every year, the total number of stations per year is not equal. We included data for 

each station from 2000 to 2016 each year in the model. 

 

2.3 Geo-Spatial database 

 

We build LUR models with information on land-use or land-cover related information from 

different GIS layers and spatial databases. In the study we calculated the density of various 

roads around the station with the spatial distribution of the road network provided by the 

Transportation of the Ministry of Transportation. We also used the 2010 database in Industrial 

Development Bureau. to measure the distance from the weather station to the nearest industrial 

park. The study further combines national land use survey databases with land-use information 

such as residential areas, farms and mountains, parks and green spaces. The spatial distribution 

of temples and Chinese restaurants with the Point of Interest (POI) landmark database and the 

crematorium from the Taiwan EPA environmental database present Taiwan's unique cultural 

sources. A digital terrain model (DTM) with a resolution of 20 m * 20 m is applied to obtain the 

altitude of the measurement location. Due to the large amount of external heat generated by the 

thermal power plant, we collected the locations of all thermal power plants in Taiwan from 

Google Maps and calculated the distance from the weather station to the nearest thermal power 

plant. 

 

In addition to the GIS database discussed above, we also considered the greening around the 

station during the study period by using NASA's MODIS Normalized Difference Vegetation 

Index (NDVI). We collected NDVI images with a spatial resolution of 250 m * 250 m and 

summarized them into annual averages for analysis. 

To represent the distribution of land use/land cover around each meteorological station, these 

geospatial predictive variables are abstracted from a circular buffer between 25m and 5000m. 

 

2.4 LUR model development and validation 

 

We will establish a land-use regression model using the method described in our previous 

paper (Wu et al., 2017; Hsu et al., 2018; Hsu et al., 2019). First, we used a supervised stepwise 

procedure to maximize the percentage of explained variability (R
2
).. To determine which 

predictors to include, we chose the a priori direction of temperature (for example, green space is 

negative and road is positive (Liu and Zhang, 2011; Ahmed et al., 2015). The model starts with 

the variable with the highest interpretation variance and has the regression slope of the expected 

direction in the univariate analysis. Other variables are then separately added to the model by 

evaluating whether the variance expansion factor (VIF) is <3 and the p value is <0.1. Repeat this 

process until all variables do not meet the above criteria. Finally, we used R
2
 and adjusted R

2
 to 

evaluate model performance. We then used 10x cross-validation (90% data for model 

development and 10% data for verification) to verify the reliability and robustness of the model. 

In addition, data from 2000 to 2016 was used for model development and data for 2017 was 

used for external validation. 

  

3. EXPERIMENTAL RESULTS 

 

3.1  Descriptive statistics of atmospheric temperature 

 

The temperature did change statistically during the 17-year period (p value <0.05). The annual 

average temperature in Taiwan is 21.5 ± 3.6 ° C (median: 22.6 ° C), which is linearly related to 
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the highest temperature (R2 = 0.87). The statistical results show that the temperature in the south 

is the highest, and there is no significant difference in temperature between the north and the 

east (p value > 0.05). 

 

3.2  LUR model development and validation 

 

Table 1 showed the LUR model. The overall model R
2
 is 0.88, the average 10-fold cross-

validation R
2
 is 0.87, and the external data verification R

2
 is 0.92. Indicates that this new model 

exhibits a high level of predictive performance. The main variables selected for the model 

include altitude, forests within 5,000 meters, distance from thermal power plants, tourist 

botanical gardens within 5,000 meters, crematoriums within 75 meters, mountains within 5,000 

meters, forests within 25 meters, 250 The NDIV in Mian, the scenic spot is less than 500 meters 

away and the temple is less than 50 meters away. Except for thermal power plants, 

crematoriums and temples, these variables are mostly negatively correlated with atmospheric 

temperatures. In our model, height first enters the model and is the most important factor for 

part R
2
 = 0.84. Arnfield (2003) reported that things like asphalt, concrete, stone, steel and other 

hard surfaces may destroy the cooling effect of the vegetation (and then raise the temperature). 

But similar variables (such as roads, residential areas, and industrial parks) were filtered out in 

the models we developed. Therefore, we conclude that lowering the temperature by increasing 

the altitude plays a very powerful role, masking other factors that affect the temperature of the 

atmosphere. 

 

Table 1. Land-use regression model for annual average temperature (°C). 

Variable 
Regression 

Coefficient 
VIF Partial R

2
 

Intercept 23.607 
 

 

Altitude -0.005 1.573 0.840 

Forest_5000 m -9.59410
-9

 2.207 0.014 

Thermal power plant 1.50310
-5

 1.184 0.008 

Tourism botanical garden_5000 m -0.153 1.042 0.002 

Crematorium _75 m 0.071 1.129 0.002 

Mountain_5000 m -0.053 1.301 0.002 

Forest_25 m -1.85210
-4

 1.317 0.001 

NDVI_250 m -0.500 1.316 0.001 

Scenic area_500 m -0.464 1.043 0.001 

Temple_50 m 4.805 1.002 0.001 

Model Performance: 

Overall Model R
2
 = 0.875; Adjusted R

2
=0.874; 10-fold Cross-Validation R

2
 = 0.870; 

External validated R
2
 = 0.917 

 

3.3  Spatiotemporal variations of atmospheric temperature 

 

The model of this study simulates the annual average temperature in Taiwan. Further 

calculations of UHII in six metropolitan areas during the study period, Taichung City has the 

highest UHII value (4.60 °C), followed by Taoyuan City (3.27 °C), New Taipei City (2.64 °C), 

Kaohsiung City (1.75 ◦C) , Tainan city (1.34 ◦C) and Taipei City (0.87 ◦C). Although Taipei is 

the most densely populated city in the six major cities, it has the lowest UHII. This may be 

because the township that is the reference point for calculating Taipei UHII is also very 

urbanized, and the proportion of artificial cement facilities is much higher than the reference 
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points of the other five metropolises (8 to 24 times). In other words, metropolitan urbanization is 

broader than other metropolitan areas, and the city's reference point may not be so meaningful. 

In addition, the UHII level in Taipei is estimated to be very different from the previous one in 

this study (Wu et al.,2013), indicating that Taipei's highest surface UHII is 10.2 °C). This is 

because Wu et al. Only the surface temperature of UHII in the short term (daily) is estimated, 

rather than the long-term calculation of the atmospheric temperature (annually) of UHII. 

 

4. DISCUSSION 

 

This paper combines the LUR model with GIS and remote sensing data to estimate the 

temperature in Taiwan and successfully combines the LUR model with the data from the 

weather station established by the Central Weather Bureau to estimate the temperature in 

Taiwan. This paper successfully applied remote sensing to the spatiotemporal variation of 

temperature, further expanding the UHI effect. 

Although atmospheric temperature reflects the same trend as surface temperature, relying 

solely on surface temperature will tend to overestimate UHII and may therefore be less reliable 

than atmospheric UHII. In addition, atmospheric temperatures may be related to human health 

(Basu, 2009; Ye et al., 2012; Guo et al., 2016). Therefore, this paper uses remote sensing 

images to develop a LUR model to predict atmospheric temperature, which is more beneficial 

for health applications than just estimating surface temperature. In addition, by using LUR, it 

can cover the deficiencies of missing data and the number of sites for the kriging method in the 

cloudy weather of the satellite method. 

Taiwan's cars have the highest density in Asia, with 378 cars per square kilometer, so traffic is 

one of the most important variables when developing the LUR model. However, there is 

currently no data on traffic intensity in Taiwan. The NOx concentration that can express the 

density of a motor vehicle is also unacceptable because the number of monitoring stations is too 

small (76 stations). Therefore, there is no flow variable in this LUR model. For other variables, 

although thermal power plants generate considerable external heat, Asia must also include 

resources with specific cultural resources. For example, in Asia, fragrant paper and incense are 

of religious importance (Lui et al., 2016), so we use the number of temples and crematoriums 

across Taiwan to reflect this partial emissions. In fact, in our newly developed LUR model, 

incense paper and incense burning is an important predictor. Therefore, we recommend that 

other scholars use this unique source of emissions as a predictor to develop LUR models to 

estimate atmospheric temperatures in other Asian regions. 

However, there are no variables selected in this study that may improve the performance of the 

model. For example, traffic intensity, number of buildings and population are not included 

because we cannot find this data in Taiwan. Nonetheless, the model uses data collected from 

hundreds of weather stations in Taiwan over the past 18 years to represent temporal and spatial 

changes in atmospheric temperature, although some uncertainty may be caused by site 

distribution (e.g., fewer sites located in mountain areas). After all, LUR models with culturally 

specific predictors were developed using integrated weather data collected over the past 18 years, 

which can be performed at very high prediction levels and can be used to show temperature 

changes in Asian cities. 

Finally, in our LUR model, altitude is the most important factor, accounting for 96% of all 

model performance. This result indicates that in the future study of atmospheric temperature as 

an influential condition, altitude can be used as a substitute for Taiwan's atmospheric 

temperature. Future research will make it easier to estimate the effects of atmospheric 

temperature by reference to the corresponding height.   

 

5.  CONCLUSIONS 
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In view of the importance of remote sensing data for the development of LUR models, this 

study builds LUR models from temperature data from 377 weather stations over the past 18 

years, combining LUR models with GIS and remote sensing data to estimate spatial variability 

of long-term atmospheric temperature.In addition, this method can also be used for future 

research to estimate Taiwan's long-term UHII. It also provides some insights into future 

epidemiological studies such as the health impact indicators of local residents. 
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