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ABSTRACT: Land-use/land-cover change detection is one of the most important applications
of remote-sensing images. With the development of satellite and sensor techniques, the
complexity of change detection caused by the improvement of image spatial solution is increasing.
The spatial unit of data analysis is generally altered from a pixel to a patch that contains
not only spectral information but also local spatial and texture information. For change
detection algorithms, previous studies focused on subtracting pixels/objects using a statistical
approach called Multivariate Alteration Detection (MAD) from bitemporal images. However,
the problem of inconsistency caused by dealing with more than two optical satellite images has
not been addressed. This paper introduces a novel method, called Multitemporal Multivariate
Alteration Detection (MMAD), to alleviate this problem. This method is based on weighted
generalized canonical correlation analysis, which solves canonical coefficients for multivariable
and multitemporal data, thereby resulting in consistent change detection. In addition, a new
weighting scheme based on object similarity, image quality, and temporal coherence is introduced
into MMAD to reduce the sensitivity to large landcover changes and to stably distinguish changed
from non-changed area. Moreover, combining patch information with MMAD can improves the
detection accuracy and make the proposed method feasible and obtain reasonable results.

1 Introduction

With the development of satellite and sensor techniques, many applications on remote sensing
have arisen with a lot of attentions, such as land cover change detection, precision agriculture, and
environment monitoring. In land cover change detection, changed information can be used for
natural resource management, urban development, and natural disaster monitoring, as well as for
predicting possible change patterns in the near future. Theoretically, changes on the Earth surface
within a certain period can be detected through multitemporal remote-sensing images (Bao et al.,
2012, Bruzzone and Prieto, 2000).

Different change detection techniques based on image algebra have been developed. One
common approach, the application of a threshold value to differentiate change from non-change,
is used in most of the change detection algorithms, which is simple and easy to interpret results.
(Coppin and Bauer, 1996) utilized image differencing to detection changes in forest ecosystems.
However, the desicion of a suitable threshold value is a challenge, especially for those images
without radiometric normalization or correction. Therefore, Howarth and Wickware (1981)
proposed a method using image ratioing to detect environmental changes, which can handle the
image calibration errors, including sun angle, shadow and topography impact (Rignot and vanZyl,
1993). Some approaches utilized the logistic regression to model the changes from forest to non-
forest (Ludeke et al., 1990) and deforestation change measuring, which reduces the adverse effect
by atmospheric conditions and sun angles (Singh, 1986).

Unlike the direct comparison, the approaches using transformation from images are famous.
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The usage of the difference from vegetation index can reduces the impacts of topographic effects
and illunimation, but the random or coherence noise would be a problem (Nordberg and Evertson,
2005, Sohl, 1999, Wilson and Sader, 2002); chage vector analysis (CVA) can process any number
of spectral band desired and produce detailed change detection information, however, encountered
the difficulties in indentifying land cover change trajectories and the requirement of the remote-
sensing data acquired from the same phonological period (Chen et al., 2003). Then, a statistic
approach called Principle component analysis (PCA) is used for the land-cover and land-use
change detecion, which reduces the redundancy of data and emphasizes different information
in the derived components (Byrne et al., 1980).

Although PCA can provide high-quality change detection, it is applied to a spectral band of
a multispectral image, which may result in inconsistent change detection among spectral bands.
Therefore, Nielsen et al. (1998) proposed a statistical-based method, called Multivariate Alteration
Detection (MAD), to find the main projected direction of the difference from bitemporal images
to obtain the lowest correlation.

MAD is invariant to linear and affine scaling, which implies that linear atmospheric and sensor
effects will not influence the change detection. However, MAD is unsuitable to deal with images
that contain many significant changes because the calculation of covariance matrix in MAD
is sensitive to outliers such as cloud pixels/patches. As a result, the method called iteratively
reweighted MAD (IR-MAD) was introduced to address this problem (Canty and Nielsen, 2008,
Nielsen, 2007). This method employs a weighted scheme to reduce the impact of outliers and
the significant change of pixels/patches in the covariance matrix computation and to gradually
distinguish unchanged pixels/patches from changed ones. However, normalization using IR-MAD
still includes some challenging problems requiring solutions. First, a good initial weight should be
provided for good convergence in the iteratively reweighting process. Second, numerous changed
pixels/patches in bitemporal images may result in inappropriate projections of MAD variates in
IR-MAD. For these reasons, Marpu et al. (2011) proposed the usage of initial change mask to
eliminate significantly changed pixels/patches in bitemporal images before performing IR-MAD.

These related methods above solely deal with bitemporal images, and the problem of
radiometric normalization for more than two images remained unaddressed. A novel method
called multitemporal and multivariate alteration detection (MMAD) is proposed in the present
study to overcome this challenge. The proposed method simultaneously deals with multitemporal
and multispectral images to discriminate unchanged pixels/patches from changed ones in an image
sequence, which leads to consistent change detection.

2 Related Work

In this study, changes in multitemporal and multispectral satellite images are detected by the
proposed MMAD, which is an extension of MAD (Nielsen et al., 1998). In this section, MAD
technique and a statisic algorithm named Generalized Canonical Correlation Analysis, which can
handle the calculation of the cross-correlation matrices of more than two random variables, are
briefly reviewed in Section 2.1 and Section 2.2, respectively.
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2.1 Review of MAD

The concept of MAD is to detect PIFs via canonical correlation analysis (CCA). CCA is a
generalization of the Pearson correlation between two random variables X and Y. For optical
satellite images, the canonical variables P and Q are defined as linear combinations of two
multispectral images with b bands; that is,

{
P = αT

x X = αx1X1 +αx2X2 + ...+αxbXb
Q = αT

y Y = αy1Y1 +αy2Y2 + ...+αybYb
, (1)

where X and Y represent the random vectors of the digital numbers of bitemporal images Ix
and Iy, and αx and αy denote unknown coefficient vectors. Nielsen et al. (1998) proposed to
solve unknown coefficients by minimizing the correlation between P and Q. That is, the variance
of P−Q, which is denoted by Var(P−Q), is maximized under the constraints Var

{
αT

x X
}
=

Var
{

αT
y Y
}
= 1. The optimization equation is written as

arg max
αx,αy

Var
{

αT
x X−αT

y Y
}

subject toVar
{

αT
x X
}
=Var

{
αT

y Y
}
= 1

. (2)

After obtaining the coefficients αx and αy, the MAD components of the bitemporal images
are derived using

MADi = Pi−Qi = α
T
xiX−α

T
yiY, i = 1 · · ·N, (3)

where i represents the band index of the bitemporal images. The first MAD component has the
minimum spread in the digital number of patches, which indicates that the first MAD component
has the maximum amount. The second MAD component has the second maximum amount of
unchanged information.

2.2 Review of Generalized CCA (GCCA)

GCCA is a statistical algorithm for calculating the cross-correlation matrices of more than two
random variables by using multiblock data analysis and partial least squares (PLS) (Tenenhaus
et al., 2015). The objective function of GCCA is similar to that of CCA. Eq.(2) for CCA is
modified to deal with multiple random variables as follows:

max
α1···αm

∑
m
i, j=1;i6= j Ci jCov(αT

i Xi,α
T
j X j),{

Ci j = 1, if Xi and X j are connected
Ci j = 0, otherwise

subject toVar
{

αT
i Xi
}
= 1, i = 1, · · · ,m,

(4)

where Xi and X j are random variables, α i and α j are their corresponding unknown coefficient
vectors, and m represents the number of input images. Given a sequence of satellite images{

I1, · · · , Im
}

, a graph that represents the connection of input images is established. In this
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graph, adjacent images are connected. In addition, the errors resulting from the optimiza-
tion of Cov(αT

1 X1,α
T
2 X2) may propagate toward the optimization of the next calculation in

Cov(αT
m−1Xm−1,α

T
mXm). Therefore, a connection is assigned to the first and last images to

address the error propagation problem. Image connection is controlled by multiplier C. If images
Ii and I j are connected, then Ci j is set to 1. Otherwise, Ci j is set to 0.

Solving the constrained objective function in Eq.(4) with the aid of Lagrange multipliers yields
the following stationary equations:

Σ
−1
ii Σ

m
i, j=1;i6= jCi j(α

T
i Σi jα j)Σi jα j = λiα i, (5)

where {λ1, · · · ,λm} are the Lagrange multipliers. Σii represents the variance matrix of random
vector Xi, and Σi j denotes the cross-covariance matrix between Xi and X j. In contrast with CCA,
which obtains coefficient vectors by solving the coupled generalized eigenvalue problem, the
optimization equation, i.e., in Eq.(5), does not provide an analytical solution for the coefficients
{α1, · · · ,αm}. Nevertheless, the stationary equations can be utilized to construct a monotonically
convergent algorithm for the optimization problem. In particular, the coefficients {α1, · · · ,αm}
are derived using an iterative scheme. With the aid of inner component V, which is introduced into
the PLS algorithm, the stationary equation can be simplified and the difficulty in computing the
coefficients {α1, · · · ,αm} can be reduced. With the inner component, the equation is transformed
to

α i =
Σ
−1
ii Cov(Xi,Vi)

[Cov(Xi,Vi)T Σ
−1
ii Cov(Xi,Vi)]

1
2
, i = 1, · · · ,m, (6)

where the covariance matrix Cov(Xi,Vi) between the random vector Xi and its corresponding
inner component Vi is defined as

Cov(Xi,Vi) =
m

∑
i, j=1;i6= j

Ci jΣi jα j. (7)

Through Eqs.(6) and (7), the unknown coefficients {α1, · · · ,αm} can be derived through an
iterative scheme using the PLS algorithm. The iterative process is formulated as

α
S+1
i =

Σ
−1
ii Cov(Xi,VS

i )

[Cov(Xi,VS
i )

T Σ
−1
ii Cov(Xi,VS

i )]
1
2
, i = 1, · · · ,m, (8)

where S represents the iteration index, and Vi denotes the inner component of image Ii. The
unknown coefficients {α1, · · · ,αm} are obtained when the iteration meets a termination criterion.
A criterion is defined as follows: the differences between the current and previous iteration
coefficients are less than a specified threshold.
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3 Methodology

3.1 Dataset and Study Area

Landsat 8 satellite, where the Operational Land Imager (OLI) and Thermal Infrared Sensor
(TIRS) are instruments onboard, containing ten spectral bands and one panchromatic band. The
spatial resolutions of the spectral and panchromatic bands are 30 m and 15 m, respectively. The
Istanbul Airport was selected as the study area in this paper, and four different dates in same season
from year 2013 to 2019 are employed with spectral information band 1 to band 7 of Landsat-8, as
shown in Figure 1. To consider computational cost, image blocks of 700× 700 pixels were tested.

Table 1: Study area in Instanbul Airport from four different dates in same season.

True Color Image

Date 1 Date 2 Date 3 Date 4
Location (path, row) (180, 31)

Band usage Band 1 to Band 7 (coastal to Short Wave Infrared)
Acquisition Date 2013/07/30 2016/07/22 2017/07/25 2019/07/31

3.2 Data Preprocessing

Patch-based change detection technology takes advantage in detecting group of like pixels
together. In this paper, four images are used simultaneously in order to obtain the same patch
pattern for all dates. Then, patch information are acquired using the software named eCognition
applying multi-resolution segmentation and spectral difference segmentation to merge simliar
patches. Then, 729 image patches are generated with the information of mean digital number
from band 1 to band 7 and texture information including the mean of GLCM Homogeneity, GLCM
angular second moment, and GLCM entropy from all multispectral bands.

3.3 Weighted Generalized Canonical Correlation Analysis

In the GCCA scheme, the unknown coefficients {α1, · · · ,αm} in the objective function are
simultaneously optimized using iterative processes. The WGCCA algorithm is proposed to solve
the problem of erroneously distinguishing changed and unchanged patches. This algorithm is
inspired by IR-MAD, which introduces a reweighting scheme to reduce the impact of patches
with a considerable change and the outliers in covariance matrix calculation. The coefficients
{α1, · · · ,αm} in WGCCA are derived from an iterative reweighted scheme. With the reweighting
scheme, the unchanged between the connected images are likely to be distinguished from the
changed patches. In the beginning of the iteration, two components have to be initialized, namely,
the unknown coefficients {α0

1, · · · ,α0
m} and weights {w0

1, · · · ,w0
n}, where n represents the number

of patches in an image. An iteration process relies on good initial values, which can facilitate
convergence and the search for global optimal coefficients. First, the initial values of coefficients
{α0

1, · · · ,α0
m} are obtained from the CCA of the connected image pairs. Each initial coefficient

α0
i is set to the average of coefficient α0

i(i−1,i) from the CCA of the connected images (Ii−1, Ii)
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and coefficient α0
i(i,i+1) from that of another connected images (Ii, Ii+1). Second, in contrast

with IR-MAD, which sets an initial weight of one to all the patches, the proposed method sets
a patch spectral angle in the connected images as the initial weight. The spectral angle of a
patch in connected images is defined in Eq.(9), in which a patch pair with a small spectral angle
and high spectral similarity is assigned a large weight. After the first iteration, the subsequent
iteration adopts different weighting strategies from the initial weights. Two factors are considered,
namely, normalized MAD (NMAD) and temporal coherence. Following the suggestion of Canty
and Nielsen (2008), the NMAD obtained in the previous iteration is used as the patch weight. To
enhance unchanged patches, the temporal coherence factor is defined as the difference between
the digital numbers of a patch and the median digital numbers of the corresponding patches in the
temporal domain. By combining the initial weight and the two reweighting scheme factors, the
patch weight in the iterative process is defined as

 wk
i j = N1

{
cos−1

(
pi

j·p
i+1
j

‖pi
j‖‖pi+1

j ‖

)}
, k = 0

wk
i j =

1
N2(NMADi( j)) ×

1
N3(TCi( j)) , k = 1, · · · ,nit ,

(9)

where k denotes the iteration index, and nit represents the number of iterations. Patch p j in the
connected images Ii and Ii+1 is represented as pi

j and pi+1
j , respectively. The NMAD and temporal

coherence values of patch p j in image Ii are denoted as NMADi( j) and TCi( j), respectively.
Functions N1(.), N2(·), and N3(·) are used to normalize the input quantities within the range of
[0.0001, 1.0]. In GCCA, a covariance matrix is used to derive the unknown coefficients. By
contrast, in WGCCA, a weighted covariance matrix, which is denoted as Σ̃, is used to solve the
unknown coefficients in WGCCA. The weighted covariance matrix is defined as

Σ̃ii =
1
n

n

∑
j=1

wi j(Xi j−X i)(Xi j−X i)

∑
n
j=1 wi j

, X =
∑

n
j=1 wi jXi j

∑
n
j=1 wi j

. (10)

With the reweighting scheme, the covariance matrix Cov(Xi,Vi) in Eq.(6) is replaced with the
weighted covariance matrix wCov(Xi,Vi), and Eq.(6) is reformatted as

α
S+1
i =

Σ̃
−1
ii wCov(Xi,VS

i )

[wCov(Xi,VS
i )

T Σ̃
−1
ii wCov(Xi,VS

i )]
1
2

, i = 1, · · · ,m, (11)

where wCov(Xi,VS
i ) represents the weighted covariance matrix of random variable Xi and the

corresponding inner component VS
i at the Sth iteration, which is defined as

wCov(Xi,VS
i ) =

m

∑
i, j=1;i6= j

Ci jΣ̃i jα
S
j . (12)

The NMAD of the connected images are generated using the final coefficients {αS+1
1 , · · · ,

αS+1
m }. The patch is likely to be classified as changed if the patch value of the NMAD image is

high. By contrast, the patch can be considered as non-changed if the patch value of the NMAD
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image is low. Thus, the value of the NMAD image can be regarded as a measure for distinguishing
changed from non-changed patches. The entire WGCCA process is illustrated in Figure 1. First,
a connected graph for the input image sequence is designed. Second, the iterative process starts
with an initial value of the unknown coefficients {α0

1, · · · ,α0
m} and patch weights {w0

1, · · · ,w0
n}.

During the iteration, the coefficients are updated using Eq.(11), and the patch weights are updated
using Eq.(9). The process is terminated when the difference between the current and previous
iteration coefficients is less than a specified threshold, i.e., ∑

m
i=1

∣∣αS+1
i −αS

i

∣∣< τ .

1

Design 
connected 

graph

Objective 
function 

Initial values

Compute 
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝐗𝐗𝑖𝑖 ,𝐕𝐕𝑖𝑖𝑆𝑆)
using Eq. (12)

Obtain 
𝛂𝛂1𝑆𝑆+1,⋯ ,𝛂𝛂𝑚𝑚𝑆𝑆+1

𝒘𝒘1
𝑆𝑆+1,⋯ ,𝒘𝒘𝑛𝑛

𝑆𝑆+1

Coefficients 
𝛂𝛂1𝑆𝑆,⋯ ,𝛂𝛂𝑚𝑚𝑆𝑆

𝒘𝒘1
𝑆𝑆,⋯ ,𝒘𝒘𝑛𝑛

𝑆𝑆

Update

For each image Eqs. (9)
and (11)

Until termination criterion is met
𝛂𝛂1𝑜𝑜 ,⋯ ,𝛂𝛂𝑚𝑚0

𝒘𝒘1
𝑜𝑜,⋯ ,𝒘𝒘𝑛𝑛

0

Figure 1: WGCCA workflow.

3.4 Change Detection

The NMAD image can be obtained for each connected image pair by using WGCCA. To
further refine the NMAD of each image and further reduce misclassifications, particularly of cloud
covers, the NMAD of the connected image pairs (Ii, Ii+1) and (Ii−1, Ii) is combined with weights to
form the NMAD of a single image at the middle of the connected images, i.e., Ii. The correlation
coefficient of the connected image pair is utilized as weight. If the correlation coefficient of the
connected image pair is high, then a few changed patches exist in this image pair, and a high weight
is assigned. In this manner, the NMAD of each image is determined by the linear combination of
NMAD of the corresponding connected images, i.e.,

NMAD∗i =
∑

m
j=1; j 6=iCi j×Coe fi j×NMADi j

∑
m
j=1; j 6=iCoe fi j

, i = 1, · · · ,m, (13)

where NMADi j and Coe fi j represent the normalized MAD and correlation coefficient of
connected images Ii and I j, respectively. NMAD∗i represents the combined NMAD for image
Ii.
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4 Experimental Results

4.1 Evaluation of change detection

Three change detection methods, namely, MAD (Canty et al., 2004), IR-MAD (Canty and
Nielsen, 2008, Nielsen, 2007), and the proposed MMAD method, were compared using the dataset
containing four images acquired on different days. The results of the NMAD image and the change
detection map are presented in Figures 2. The NMAD image represents the possibility of change
patches, which are depicted in blue to yellow corresponding to change possibility from low to high.
For a fair comparison, the threshold for selecting unchanged patches from the NMAD image is
the same. To visualize the results, unchanged patches are marked with true colors, whereas the
others are displayed in red. In MAD and IR-MAD, NMAD images are generated from image
pairs, whereas in MMAD, NMAD images are generated from all images. In particular, a set of
unchanged patches is extracted simultaneously from all images in MMAD, therefore, the result
of MMAD is no need to show in pairs. In MAD and IR-MAD, the change detection results are
visually similar and over detected. However, for MMAD, which consider all temporal information
at once, is more robust than the other two compared methods.
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Figure 2: Comparison of change detection using MAD, IR-MAD, and the proposed MMAD.
Changed and unchanged patches are displayed in red and true color, respectively; NMAD images
are depicted from blue to yellow corresponding to change possibility from low to high.
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4.2 Evaluation of texture features

The comparison of using texture information are presented in Figure 3, where three change
detection methods, namely MAD, IR-MAD, and proposed MMAD, were compared. In this
experiment, the performance of MMAD shows the highest stability in adding texture information.
Besides, the change detection without texture information only consider the mean reflectance
of the patches, which has lack details in the patch of the Istanbul airport undetected using the
threshold defined by chi-square distribution. By contrast, the results with texture feature consider
the information of the patch pattern and the airport is successfully detected as change patch.
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Figure 3: Comparison of using texture features between MAD, IR-MAD, and the proposed
MMAD. 1st row: NMAD image of image pair in date 1 and 4 for MAD and IR-MAD, and NMAD
image in date 4 for MMAD; 2nd row: change map for date 4.

5 Conclusions

A novel method called MMAD is proposed for detecting changed patches from a satellite
image sequence instead of pairwisely extracting those from bitemporal images. The proposed
method is based on WGCCA which solves the canonical coefficients for multivariate and
multitemporal data, thereby resulting in a consistent change detection. Two sets of SPOT-5
multitemporal images were tested in the experiments. From the visual comparison of the extracted
changed patches, along with the quantitative analysis of the selected non-chaged patches, we
conclude that the results of the proposed MMAD are better than those of MAD and IR-MAD in
terms of the quality of the selected non-chaged patches, particularly for multitemporal images with
considerable landcover changes. In this study, the weighting scheme based on patch similarity,
image quality, and temporal coherence is introduced into MMAD to reduce the sensitivity of
change detection to cloud covers and to stably distinguish chaged from non-changed patches.
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