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Abstract: Land use change and urbanization are the two astonishing factors can introduce ambiguity to the 

estimation of global temperature trends related to climate change. In this work, we investigate the characteristics of 

urban expansion and its impact on land surface temperature using a time series of Landsat images. Acurate land cover 

information required in order to relate land surface temperature with land cover features. Even with increased number 

of satellite systems and sensors acquiring data with improved spectral, spatial, radiometric and temporal 

characteristics of remotely sensed image with an ambiguous accuracy. One major approach for improving accuracy 

is to develop an accurate and effective image classification algorithm. This work incorporates a long short-term 

memory (LSTM) recurrent neural network (RNN) model to take advantage for time series images to improve 

accuracy and reduce complexity. Network trained thoroughly using state of the art techniques of deep learning and 

finally, we tested our model on multiple Landsat images to derive urban land cover changes (ULCC). Then, Land 

surface temperature has been calculated from thermal data of Landsat TM/TIRS using emissivity derived from NDVI 

images. Urban density as a measure of urbanization has been derived from gravity model. Later, land surface 

temperature data associated with land use and land cover information for further investigation of the relationship 

between land surface temperature behavior with land cover features. The results provide a scientific reference for 

policy makers and urban planners can work towards a sustainable and healthy environment. 
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Introduction: 

 

Land cover refers to the pattern of ecological resources and human activities dominating different areas of 
the Earth’s surface. It is a critical type of information supporting various environmental science and land management 

applications at global, regional, and local scales (Foley et al., 2005; Meyer & Turner, 1994). Given the importance of 

land cover information to global change and environmental sustainability research, there have been numerous efforts 

aiming to derive accurate land cover datasets at various scales mostly by using various remote sensing technology. 
However, even with the increased number of satellite systems and  sensors acquiring data with improved spectral, 

spatial, radiometric and temporal characteristics and the new data distribution policy, most existing land cover 

datasets were derived from a pixel-based single-date multi-spectral remotely sensed imagery using conventional or 

advanced pattern recognition techniques such as random forests (RFs) (Shi & Yang, 2016), neural networks (NNs) 

(Kavzoglu & Mather, 2003; Mas & Flores, 2008) and support vector machines (SVMs). A major bottleneck is an 

accurate and effective image classification technique which can incorporate and utilize multi-spectral, multi-temporal 

and spatial information available to derive land cover datasets from remote sensing images. 

Urban land cover changes (ULCC) due to urbanization are mainly caused by removal of vegetation cover, which 
affects the surface climate. When the surfaces of different materials receive the same amount of solar radiation, the 

resulting temperature differs due to differences in their heat capacity. Land surface temperature (LST) is an important 

indicator of urban climate. Due to urban areas’ surface cover, surface temperature is higher than in vegetated and 

water-covered areas. Accordingly, the increasing number of built-up areas results in increased temperature values. It 
is important to study the impact of urbanization on LST, since it can disrupt a wide range of natural processes. Using 

remote sensing for studying climate variables has become popular, especially with the introduction of thermal remote 

sensing. However, a historical construction of the relationship is needed in order to reach reliable conclusions. To 

address this, one study used 507 Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+) images 

from 1990 to 2018. This attempt found it challenging to automatically characterize ULCC consistently at an 

acceptable accuracy. In this paper we assess the use of deep neural networks to consider the temporal correlation of 

the data. In fact, through recent advances in machine learning, there has been an increased interest in time series 
classification using deep convolutional neural networks (CNNs) and recurrent neuron networks (RNNs) that can take 

advantage of neural networks for end-to-end classification of a time series. Moreover, RNN approaches can be used 

to work on pixel-based time series. Accordingly, we focus our attention on RNN approaches for the classification. 
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Thanks to their property, RNNs offer models to explicitly manage temporal dependencies among data (e.g., long 

short term memory (LSTM) and Gated Recurrent Unit (GRU)), which makes them suitable for the mining of 

multitemporal SAR Sentinel-1 data or Landsat series of images. 

The objective of this work is to evaluate the potential of high spatial and temporal resolution of Landsat remote 

sensing data to: (i) Map different agricultural land covers; and (ii) assess the new deep learning technique by 

comparing it with the standard machine learning approaches, (iii) make relationship between land surface temperature 

and land cover features. 

 

Datasets 
 

In this study, the main data sets were time series of Landsat images taken by the Landsat TM, Landsat ETM+, 

and Landsat Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) sensors, and obtained from the USGS 

website (https://earthexplorer.usgs.gov). studies. Satellite images were obtained with 3–4‐year intervals, and within 

the same season (the dry season) to avoid phenological variations. variations. The software used to conduct image 

processing included Environment for Visualizing Images (ENVI), ArcGIS 10.5. Pre-processing was done for the 

Landsat images as it can have a great impact on the results of the analysis. Usually, it is not necessary to conduct a 

geometric correction for Landsat level 1 products, as they are registered and ortho-rectified through a systematic 

process. 

 

Table 1. Information about Landsat image used in this study. 
 

ID Sensor 

Type 

Acquisition 

data 

Path/Row Spatial 

resolution 

LT05_L1TP_117043_19951125_20170106_01_T1 TM 11/25/1995 117/43 30 m 

LE07_L1TP_117043_20000927_20180429_01_T1 ETM 9/27/2000 117/43 30 m 

LE07_L1TP_117043_20050909_20170113_01_T1 ETM 9/9/2005 117/43 30 m 

LE07_L1TP_117043_20101228_20161211_01_T1 ETM 12/28/2010 117/43 30 m 

LC08_L1TP_117043_20180313_20180320_01_T1 OLI_TIRS 3/13/2018 117/43 30 m 

 
 

 

 

Fig 1. Sample images from EuroSAT dataset 

 
The Sentinel-2 satellite constellation provides about 1.6 TB of compressed images per day. Unfortunately, supervised 

machine learning is restricted even with this amount of data by the lack of labeled ground truth data. The generation 

of the benchmarking EuroSAT dataset was motivated by the objective of making this open and free satellite data 

accessible to various Earth observation applications and the observation that existing benchmark datasets are not 

suitable for the intended applications with Sentinel-2 satellite images. The dataset consists of 10 different classes with 

2,000 to 3,000 images per class. In total, the dataset has 27,000 images. The patches measure 64x64 pixels. We have 

chosen 10 different land use and land cover classes based on the principle that they showed to be visible at the 
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resolution of 10 meters per pixel and are frequently enough covered by the European Urban Atlas to generate 

thousands of image patches.EuroSAT dataset was very useful  for land use land cover classification using Lstm RNN 

networks through transfer learning of VGG-16 model. 

 

 

Long-Short Term Memory (LSTM): 

 
The existing RNN models fail to learn long-term dependencies because of the problem of vanishing and 

exploding gradients. To overcome this challenge, the LSTM model is used by Hochreiter, S.; Schmidhuber, J 1996.. 

The Equations (1)–(6) formally describes the LSTM neuron. The LSTM set consists of two cell states: The Ct memory 

and the ht hidden state. Three different gates intervene in the control of the flow of information: The input (it), the 

forget ( ft) and the output (ot). All three gates mix the current entry, xt, with the hidden state, ht-1, from the previous 

timestamp. Also, the gates have two major functions: (i) They regulate the quantity of information to forget/remember 

during the process; (ii) they deal with the problem of gradient disappearance/bursting. We can see that the gates are 

implemented by a sigmoid. This function gives values between 0 and 1. The LSTM unit also uses a temporary cell 

state, yt, that resizes the current input. This current cell is applied by a hyperbolic tangent function that gives values 

between -1 and 1. The sigmoid and the hyperbolic tangent work per element. it sets the amount of information to 

keep (it ʘ yt), while ft indicates how much memory should be kept in the current step ( ft ʘ ct-1). The input of an RNN 
is a sequence of variables (x1, ..., xn), where xt is a generic element that represents a feature vector and t refers to the 

corresponding timestamp. 

Finally, ot has an impact on the new hidden state, ht, which determines how much information from the 

current memory will be on the output step. The different matrices, W**, and bias coefficients, b*, are the parameters 

used during model formation. The memory, Ct, and the hidden state, ht, are both transmitted at the next step. 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑥𝑡 +𝑊𝑖ℎℎ𝑡−1 + 𝑏𝑖) 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑥𝑡 +𝑊𝑓ℎℎ𝑡−1 + 𝑏𝑓) 

𝑦𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑦𝑥𝑥𝑡 +𝑊𝑦ℎℎ𝑡−1 + 𝑏𝑦) 

𝑐𝑡 = 𝑖𝑡ʘ𝑦𝑡 + 𝑓𝑡ʘ𝑐𝑡−1 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑥𝑡 +𝑊𝑜ℎℎ𝑡−1 + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡ʘtanh(𝑐𝑡) 
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Fig 2. Schematic illustration of our proposed bidirectional sequential encoder network. The input sequence 

x ϵ {x0,…xT}of observations xt ϵ  𝑅ℎ×𝑤×𝑑is encoded to a representation cT = [𝐶𝑇
𝑠𝑒𝑞

||𝐶0
𝑖𝑛𝑣 ].The observations are 

passed in sequence (seq) and reversed (rev) order to the encoder to eliminate bias towards recent observations. The 

concatenated representation of both passes cT is then projected to softmax-normalized feature maps for each class 
using a convolutional layer. ( Rußwurm M., Körner M. (2018). 

 

Land Surface Temperature Estimation 

 

In the literature, numerous studies can be found on methods for calculating LST using Landsat images. The 

Mono–Window algorithm(Qin et al., 2001) ,the radiative transfer equation(Sobrino, et al.,2004), and the Single–

Channel algorithm (Jimenez-Munoz et al., 2003) are some of the commonly known methods. However, these methods 

require additional 

input parameters (such as atmospheric water vapor content and near-surface air temperature) from ground-based 

observations, captured simultaneously with the satellite passes, and these are usually unavailable. 

For this reason, the method developed by number of researcher which necessitates no additional input parameters, 
was chosen for this research. All the digital numbers (DN values) of thermal bands corresponding to the classification 

year were converted into spectral radiance. Then the effective at-sensor brightness temperature is also calculated. 

 

Effective at-Sensor Brightness Temperature 

The equation for calculating the brightness temperature equation below is the same for Landsat TM, ETM+, 

and OLI/TIRS; 

 

𝑇 = 𝐾2/𝑖𝑛(
𝑘1

𝐿𝜆
+ 1) 

 

where T is the effective at-satellite temperature (Kelvin), K1 is a calibration constant in W/(m2.sr. µm), 

and K2 is another calibration constant in Kelvin. 

 

Land Surface Emissivity Calculation 

Knowledge of surface emissivity is important for land surface temperature calculations by remote sensing. 

In optical thermal remote sensing, there have been several studies on emissivity. Among these, 

we adopted the frequently used method with the calculation of emissivity using simplified normalized difference 

vegetation index (NDVI) thresholds, derived from the spectral reflectance in the red and near infrared bands. In this 

method, it assumed that the surface is flat and homogenous. The conditional below Equation for emissivity calculation 

is as follows: 

𝑒𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦 = 𝜀𝑣𝜆𝑃𝑉 + 𝜀𝑠𝜆(1 − 𝑃𝑣) + 𝐶𝜆 
 

where 𝜀𝑣 and 𝜀𝑠 are the vegetation and soil emissivity, which in this study are 0.98 and 0.92, respectively; and C 
represents the surface roughness (C = 0 for homogenous and flat surfaces), taken as a constant value of 0.005 

 

Land Surface Temperature Estimation 

 

Using the above calculated emissivity and effective at-sensor brightness temperature, images were further 

used to derive LST using Equation  developed by 

 

𝐿𝑆𝑇 =
𝐵𝑇

({1 +𝑊 ∗ (
𝐵𝑇
𝜌
) ∗ 𝐼𝑛(𝑒)})

 

where LST is in Kelvin (K), BT is the at-sensor brightness temperature (Kelvin), 𝜌 = h c/𝜎,𝜎 = Boltzmann constant 

(1.38 x 10-23 J/K), h is Planck’s constant (6.626 x 10-34 J/s), c is the velocity of light (2.998x 108 m/s), and e is the 

emissivity. 

 

Land surface Temperature calculation: 

 

The LSTs calculated from the Landsat images as discussed in the methodology are presented in Figure below. 
It shows a clear gradient between the urban areas and rural areas from 1990 to 2018, and also illustrates the increase 

in temperature. This is mainly due to the fact that urban surface materials will have higher radiant temperatures. The 

land cover pattern also shows a similar gradient to the temperature values. 
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Fig 3. LST calculated images from 1995-2018 

 

 

Conclusion and future work 

 
In this paper, we studied potential of high spatial and temporal resolution of sentinel -1 remote sensing data 

for different agriculture land cover mapping applications and assessed through transfer learning and Long-short term 

memory recurrent neural networks. From a socio-economic perspective, cities are considered as magnets that attract 

people for various social and economic opportunities. Cities may attract or repel residents, money and business 

investment. To investigate the long-term changes of ULCC, and its impacts on thermal characteristics different 

methods should be employed such as gravity model or multiple buffer ring method. Since main consideration of this 

research is to identify the relationship between land cover features and LST values and LST values in the different 

land cover features should be extracted. 
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