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ABSTRACT: Bamboo is one of the most important and fast growing species in the planet and it accounts for 1% of 
the earth's forest areas. Naturally, the specie has extremely high efficiency for carbon absorption. Therefore, 
monitoring its biomass changes can provide a good reference for global carbon cycle research. In recent years, the 
development of unmanned aerial vehicles (UAVs) has led to the rapid development of regional high-precision remote 
sensing biomass monitoring technology. However, the explanatory variables based on UAVs photography are mostly 
characterized by spectral, texture, and point cloud height parameters. Therefore, based on the explanatory variables 
of UAV image photography, we propose a new method for predicting the biomass of Moso bamboo (Phyllostachys 
pubescens). A series of shadow-based remote sensing variables were developed for bamboo biomass estimation, such 
as shadow fraction, shadow perimeter, shadow perimeter standard deviation, shadow count, average area for each 
shadow, shadow perimeter/area ratio, etc. Through regression analysis, we can understand the relationship between 
the shadow-based remote sensing variables and the bamboo biomass. The results indicate that shadow-based remote 
sensing metrics have potential predictive Moso bamboo biomass. The shadow-based remote sensing metrics proposed 
in this study can be used as an aid to the estimation of bamboo biomass. 

 

1. MANUSCRIPT 

 

Bamboo forest is one of the most important and fast-growing species in the planet and it accounts for 1% of the earth's 

forest areas. Approximately 15% of world’s bamboo forests are concentrated in China (Yuen et al., 2017), and Moso 

bamboo (Phyllostachys pubescens) accounts for approximately 70% of the bamboo in China (Xu et al., 2011). Moso 

bamboo is also the most important economic bamboo in China. Naturally, the specie has extremely high efficiency for 

carbon absorption. Therefore, monitoring its biomass changes can provide a good reference for global carbon cycle 

research.  

In recent years, the development of unmanned aerial vehicles (UAVs) has led to the rapid development of regional 

high-precision remote sensing biomass monitoring technology (Wallace et al., 2016; Puliti et al., 2015). However, the 

explanatory variables for estimating forest biomass based on UAV photography are mainly characterized by spectral, 

texture and point cloud height parameters. In fact, less scholars pay attention to the information in the shadow of the 

image. In fact, the image shadow hides some information, such as remote sensing for forests. At present, remote sensing 

image shading is considered to be the last important image feature and is highly correlated with the canopy structure 

(Peddle et al., 1999). The heterogeneity of the canopy canopy produces a large number of shadows and is reflected in 

remote sensing images. These shades are related to many biophysical factors such as biomass, net productivity, and leaf 

area index (Seed and King, 2003). Some studies have shown that the shadow fraction of high-resolution images is 

related to some stand parameters (Leboeuf et al., 2007; Leboeuf et al., 2012; Leboeuf et al ., 2013). The shadow feature 

parameters also bring some important information that provides new options for high-resolution imagery in forest 

biomass estimation. However, the shadow characteristic parameters are less common in previous studies, with the 

shadow fraction as the main shadow feature parameter. On the other hand, according to Hsieh et al. (2016) research, 

the spectral features of the shaded areas are quite different from those of the non-shaded areas. Therefore the 

characteristics of the spectrum of the shaded area, it should be possible to build shadow spectrum metrics for analysis 

testing. 

Therefore, this study attempts to develop a series of shadow-based variables based on the explanatory of UAV image 

photography. A series of shadow-based remote sensing variables were developed for bamboo biomass estimation.  
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2. MATERIALS 

 

2.1 Field data 

 

A total of 88 ground sample plots were used in this study (Figure 1). The ground sample plots size was 20 m × 20 m. 

Within each plot, all bamboo and trees were measured. Their species, dbh (1.3 m), tree height, bamboo age was 

measured and recorded (dbh > 5 cm). In order to calculate the biomass of bamboo, we adopt the empirical equation to 

estimate bamboo biomass of each plot as follows (Zhou & Jiang 2004): 

 

M = 747.787D2.771 [0.148A/(0.028 + A)]5.555 + 3.772 

 

Where, M is biomass of single bamboo plant in kg; D is DBH of the bamboo culm in cm; and A is a value related to 

bamboo age, which is dimen-sionless. In China, a new Moso bamboo culm grows usually every 2-years. Thus, A = 1 

corresponds to 1-2 years of bamboo age, and A = 2, 3 and 4 correspond to 3 - 4, 5 - 6 and 7 - 8 year-old culms, 

respectively. 

 

2.2 UAV image 

 

UAV images in Yongan were collected in June 2018 under good conditions with sunny weather and wind speeds of 

<1 m/s. The flight altitude was set to 300 m above ground and the images were acquired using a Micasense camera. 

Micasense camera has 5 multi-spectral bands (blue, green, red, near-infrared, red-edge). The overlap was set to 85% 

along the tracks and 75% between the tracks. UAV images are processed using Pix4d to create a 3D point cloud. Pix4d 

combines SfM and photogrammetric stereo matching algorithms to perform 3D reconstruction of overlapping images.  

 

3. METHODOLOGY 

 

3.1 Shadow detection 

 

For the image shadow, the shadow bitmap was produced by applying a threshold value to the calculations of modified 

intensity from Nagao et al. (1979). The thresholds were determined using the first valley detection method, as in 

Equation (1) (Adeline et al. 2013): 
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where I = Nagao’s modified intensity; RED = red waveband; GREEN = green waveband; BLUE = blue waveband; and 

NIR = near-infrared waveband. 

The difference between the shadowed and non-shadowed areas was enhanced using Nagao et al.’s (1979) modified 

intensity image prior to dividing it into shadowed and non-shadowed areas. Because of the location of the shadows in 

the histograms, mainly occupying the first mode, the thresholds of the shadowed areas were determined using the first 

valley detection method (Adeline et al. 2013).  

 

3.2 Extraction of explanatory variables 

 

In this study, we get the shape and distribution of shadows through shadow detection. The following shadow shape 

metrics are constructed based on the shape features such as the area, perimeter, and number of shadows. Table 1 

provides a detailed description of the shadow shape image explanatory metrics. 

 

Table 1 Summary of the shadow shape metrics 

Metric Description 

SF Shadow fraction is the sum of all areas occupied by the shadow of a given tree divided by the total 

area of the ground 

SP Shadow perimeter per ha (m/ha) 

SC Shadow count per ha (count/ha) 

SA/C Average area for each shadow (m2) 

SP/C Average perimeter for each shadow (m) 

SP/A Shadow perimeter/area ratio 
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This study proposes the following basic shadow spectrum metrics. The spectral spectrum of each band of the shaded 

area is statistically analyzed to construct a shadow spectrum metrics. Table 2 provides a detailed description of the 

shadow spectrum metrics. 

 

Table 2 Summary of the shadow spectrum metrics 

Metrics Description 

SNDVI_mean Mean NDVI in shadow area 

SNDVI_max Maximum NDVI in shadow area 

SNDVI_min Minimum NDVI in shadow area 

SNDVI_range Difference between maximum and minimum NDVI 

values in shadow area 

SNDVI_STD Standard deviation of NDVI in shadow area 

Smean_R, Smean_G, Smean_B, 

Smean_NIR, Smean_Red-edge 

Mean value of R, G, B, NIR, and Red-edge bands in 

shadow area 

Smax_R, Smax_G, Smax_B, Smax_NIR, 

Smax_Red-edge 

Maximum value of R, G, B, NIR, and Red-edge bands 

in shadow area 

Smin_R, Smin_G, Smin_B, Smin_NIR, 

Smin_Red-edge 

Minimum value of R, G, B, NIR, and Red-edge bands 

in shadow area 

Srange_R, Srange_G, Srange_B, 

Srange_NIR, Srange_Red-edge 

Difference between maximum and minimum values of 

R, G, B, NIR, and Red-edge bands in shadow area 

SSTD_R, SSTD_G, SSTD_B, SSTD_NIR, 

SSTD_Red-edge 

Standard deviation of NDVI in shadow area 

 

3.3 Regression models and Accuracy assessment 

 

First, this study separately analyzes each shadow-based metrics and field-measured bamboo biomass data by typical 

correlation analysis, to see the relationship between each metric and field-measured bamboo biomass. 

To build a prediction model for bamboo biomass through shadow-based metrics,  a set of multiple regression models 

were built using the selected metrics and the field-measured bamboo biomass data to predict bamboo biomass. A 

stepwise regression approach was then employed to search the best fit model using the shadow-based metrics from the 

preliminary bamboo biomass model. In our regression analyses of the relationship between shadow-based metrics and 

field-measured data, the values of the former served as the independent variable to establish a statistical relationship 

that was used to predict the bamboo biomass. To develop the regression model, 70% of the ground sample plots (63) 

were randomly selected as a training or modeling dataset. An adjusted regression coefficient (R2
adj) was calculated as a 

representative indicator of the fit quality. Supplemental statistics were calculated to evaluate the accuracy of the shadow 

fraction regression model. We used the remaining 30% of the ground sample plots (25) to calculate the absolute and 

relative root mean square errors (RMSE and RMSEr) of the regression model. 

 

4. Results and  Discussion 

 

4.1 Correlation of shadow-based metrics with bamboo biomass 

 

Through regression analysis, we can understand the relationship between the shadow-based remote sensing variables 

and the bamboo biomass. The relationship between each metrics and biomass was known from the results of the 

correlation analysis. In the shadow shape metrics, SP had a significant correlation with biomass (p<0.05) (Table 3). SP 

is the unit perimeter of the shadow, and the relationship between the perimeter of the shadow and the biomass of the 

bamboo can be discussed later. From the results, it can be found that there is no significant relationship between SF and 

bamboo biomass. In the past, the research on the use of SF for the stand parameters of conifers was estimated (Leboeuf 

et al., 2007; Leboeuf et al., 2012; Leboeuf et al., 2013). SF has no obvious benefit for the estimation of the bamboo 

forest biomass. 
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Table 3 Correlation analysis of shadow shape metrics and bamboo biomass 

Metrics R p-value 

SF -0.165605 p=0.121 

SP -0.224429 p=0.034* 

SC -0.045424 p=0.673 

SA_C -0.157881 p=0.139 

SP_C -0.176328 p=0.098 

SP_A 0.151789 p=0.156 

 

In shadow shape metrics, SNDVI_min, SNDVI_max, SNDVI_range, SNDVI_mean, SNDVI_STD, Srange_B, 

Smax_R, Srange_R, SSTD_R, Smin_NIR, Smean_NIR, SSTD_NIR were significantly correlated with biomass 

(p<0.05, p<0.01)( Table 4). Among them, the NDVI metrics of the shaded area can be found to have a higher R value, 

which indicates that it has a higher contribution (Table 4). 

 

Table 4  Correlation analysis of shadow spectrum metrics and bamboo biomass 

Metrics R p-value  Metrics R p-value 

SNDVI_min 0.474279 p=0.000**  Smin_R 0.185130 p=0.082 

SNDVI_max 0.361661 p=0.000**  Smax_R -0.323324 p=0.002* 

SNDVI_range -0.316389 p=0.003**  Srange_R -0.366190 p=0.000** 

SNDVI_mean 0.444703 p=0.000**  Smean_NIR -0.064858 p=0.546 

SNDVI_STD -0.398905 p=0.000**  SSTD_R -0.269050 p=0.011 

Smin_B 0.347573 p=0.001**  Smin_NIR 0.365205 p=0.000 

Smax_B -0.105279 p=0.326  Smax_NIR 0.173640 p=0.104 

Srange_B -0.251932 P=0.017*  Srange_NIR -0.160786 p=0.132 

Smean_B 0.199901 P=0.060  Smean_NIR 0.320567 p=0.002* 

SSTD_B -0.163152 p=0.127  SSTD_NIR -0.232124 p=0.029* 

Smin_G 0.171039 p=0.109  Smin_Red-edge 0.163725 p=0.125 

Smax_G -0.103347 p=0.335  Smax_Red-edge 0.078955 p=0.462 

Srange_G -0.145277 p=0.174  Srange_Red-edge -0.008836 p=0.935 

Smean_G 0.154784 p=0.148  Smean_Red-edge 0.139213 p=0.193 

SSTD_G 0.041876 p=0.697  SSTD_Red-edge 0.038087 p=0.723 

 

In this study, NDVI metrics (including shadow and non-shadow images) in the sample area was also calculated, and 

correlation analysis with bamboo biomass was also carried out. The analysis results are shown in Table 4. Among them, 

NDVI_min, NDVI_max, NDVI_range, NDVI_mean had significant correlation with biomass (p<0.05, p<0.01). 

 However, compared to the shadow-based NDVI metrics (SNDVI_min, SNDVI_max, SNDVI_range, SNDVI_mean, 

SNDVI_STD), the R values are higher than the NDVI metrics, such as the R values of SNDVI_min and NDVI_min 

are 0.371101, 0.474279. The NDVI in the shaded area is better correlated with the biomass. 

 

Table 5 Correlation analysis of NDVI metrics and bamboo biomass   

Metrics Description R p 

NDVI_min Minimum NDVI  0.371101 p=0.000** 

NDVI_max Maximum NDVI 0.281464 p=0.008** 

NDVI_range 
Difference between maximum and 

minimum NDVI values  
-0.306068 p=0.004** 

NDVI_mean Mean NDVI  0.241748 p=0.022* 

NDVI_STD Standard deviation of NDVI -0.200153 p=0.060 
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4.2 Bamboo-based biomass estimation model for shadow-based metrics 

 

Through stepwise learning analysis, the obtained model R2
Adj=0.446 is slightly lower, whereas RMSEr=25.65% is still 

an acceptable range (Table 6). In a study comparing past telemetry to estimate bamboo biomass, Cao et al (2019) used 

LiDAR metrics predicted Moso bamboo biomass (R2=0.59–0.87, RMSEr=11.92–21.11%) with LiDAR percentile heights 

and the coefficient of variation of height. Although the RMSEr of this study is slightly higher than that of Cao et al. 

(2019), this study mainly uses low-cost UAV images, and its shooting cost is unmatched by LiDAR. 

 

The selected parameters are SNDVI_min, SSTD_G, Srange_R, SP, SNDVI_max. Visible by the selected metrics, shadow 

spectrum metrics dominates the model (Table 6). The main component, the parameters of the shaded area NDVI are 

selected by two parameters. The NDVI in the shaded area has high importance; the SP is also selected, and the SP is the 

unit perimeter of the bamboo forest shadow. This parameter is also a parameter not mentioned in the past literature. The 

results indicate that shadow-based remote sensing metrics have potential predictive Moso bamboo biomass. 

 

Table 6 Summary of the regression analysis for the estimation of biomass with the explanatory shadow-based metrics.  

Model  R2 Adj. R2 RMSE (Mg ha−1) RMSEr(%) 

26.705 SNDVI_min + 1796.882 SSTD_G**-381.175 

Srange_R*-0.002 SP+ 72.575 SNDVI_max**-6.269 

0.491 0.446 7.48 25.65 

⁎ b0.05 level of significance. 

⁎⁎ b0.01 level of significance. 

⁎⁎⁎ b0.001 level of significance. 

 

5. Conclusions 

The shadow-based remote sensing metrics proposed in this study can be used as an aid to the estimation of bamboo 

biomass. The NDVI in the shaded area is significantly helpful for the estimation of bamboo biomass, and the correlation 

is better than the NDVI that is generally not considered for shadow. Subsequent development of other shadow-related 

metrics, such as the combination of shadow metrics of UAV matching point clouds, etc., in order to facilitate subsequent 

enhancement of model accuracy. 
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