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ABSTRACT: Traditionally, the orthometric height H used in engineering application can be derived by leveling, 
which requires high cost of labor and time. On the other hand, the ellipsoidal height h derived by Global Positioning 
System (GPS) has the advantage of lower cost. The method of GPS Levelling can be applied to obtain the orthometric 
height from GPS-derived data. And for the transformation between ellipsoidal heights h and orthometric heights H, 
undulation N with sufficient accuracy is the main study goal. 
There exist a number of methods for approximating the undulation model. The polynomial method is the most widely 
used method to fit the geoidal undulation. However, the polynomial fitting method has its limitation when determined 
the undulation model in large areas with complex terrain. In order to improve the undulation estimation accuracy, the 
Genetic Algorithm (GA) is first used to search and optimize the parameters of LSSVM (i.e., LSSVM(GA)), and then 
use LSSVM(GA) to establish the undulation model.  
In this paper, 283 benchmark points distributed throughout the central part of Taiwan region with its orthometric 
height, ellipsoidal height and plane coordinates were used as test data. According to the test results, the accuracies of 
undulation estimation are improved about 42.83% (reduced from 0.0523m to 0.0299m) after using genetic algorithm 
based least squares support machine. The proposed method, LSSVM(GA), and test results will be presented in this 
paper. 

 
1. INTRODUCTION 
 
Orthometric heights are referred to the geoid. They can be used in engineering application with their physical meaning. 
Traditionally, orthometric heights can be obtained by spirit leveling, which are quite arduous and time-consuming 
(Kavzoglu and Saka, 2003). In comparison to leveling, Global Positioning System (GPS) provides more practical, 
rapid, precise observation and can obtain three-dimensional coordinate simultaneously anywhere on the earth (Gullu 
et al., 2011). However, GPS-derived ellipsoidal height is merely geometric value. To be able to use ellipsoidal heights 
in most engineering and surveying projects, their transformation to orthometric heights can be conducted according 
to the following equation (Featherstone et al., 2000; Lin, 2014; Doganalp and Selvi., 2015): 

H = h − N  
(1) 

where H is the orthometric height, the distance of a point on the earth from the geoid along curved plumb line; h is 
the ellipsoidal height, the distance of a point on the earth from the surface of the reference ellipsoid along the normal; 
N denotes the geoid undulation, the difference between WGS84 ellipsoidal height and the orthometric height with 
respect to the geoid (Gullu et al., 2011). 
According to Eq. (1), orthometric heights can be obtained in combination of ellipsoidal heights and undulation value, 
which is called GPS leveling method (Mårtensson, 2002; Gullu et al., 2011). Thus, the establishment of undulation 
model is known to be the crucial part of the GPS leveling method. 
In the aspect of determined the undulation model, there are two main approaches: the gravimetric method and the 
geometric method (Gullu et al., 2011). For the gravimetric method, it requires uniform distribution, high precision 
gravity information and terrain data, which is difficult to achieve in the actual engineering application (Liu et al., 
2014). As for the geometric method, many methods like polynomial and Kriging method are common ways to be 
used. Nevertheless, the shape of the geoid is very complex and the task of approximating the geoid surface by a 
relatively simple mathematical expression is hardly easy (Stopar et al., 2006). In recent years, there are lots of 
algorithm such as Artificial Neural Network, Support Vector Machine, Particle Swarm Optimization are proposed to 
establish the undulation model with the advancement of computer science. 
Least Squares Support Vector Machine (LSSVM) were proposed by Suykens and Vandewalle in 1999. It not only has 
the capability of solving the problems of small sample size, nonlinearity, high dimension and local minimum, but it 
also requires few parameters and solves the problem fast in comparison with SVM. However, many papers have 
shown that the parameters selection of LSSVM is still the problem to be solved. Therefore, in this study, the Genetic 
Algorithm (GA), which has the ability to obtain the globally optimal solution, will be used to optimize the parameters 
of LSSVM for the purpose of improving the accuracy of the undulation. 
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2. METHODOLOGY 
 
2.1 The undulation model developed by geometric methods 
 
The orthometric height H is the distance of a point on the earth from the geoid along curved plumb line. In addition, 
the ellipsoidal height h means the distance of a point on the earth from the surface of the reference ellipsoid along the 
normal. To be able to use ellipsoidal heights in most engineering and surveying projects, a GPS-derived ellipsoidal 
height is converted to an orthometric height using a knowledge of the undulation. As shown in Fig.1 and expressed 
by Eq. (2), the undulation value is the difference between the ellipsoidal height and the orthometric height. 
(Featherstone et al., 2000; Lin, 2014; Doganalp and Selvi, 2015): 

N = h − H  (2) 

 
Figure 1. The relationship between orthometric height (H), ellipsoidal height (h) and undulation (N) 

According to Eq. (2) , the undulations can be derived by subtracting the orthometric height from the ellipsoidal height 
of a point (shown as Eq. (3)). Therefore, the undulation data derived by Eq. (3) can be used as training data to establish 
the undulation model. 

𝑁𝑁(𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖) = ℎ𝑖𝑖 − 𝐻𝐻𝑖𝑖 ,   𝑖𝑖 = 1,2, … ,𝑛𝑛  (3) 

where (𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖) represents the plane coordinate of each point; ℎ𝑖𝑖 is the ellipsoidal height of each point; 𝐻𝐻𝑖𝑖 is the 
orthometric height of each point; 𝑁𝑁𝑖𝑖 is the undulation value of each point. 

 
Figure 2. The distribution of points used to train the undulation model. 

 
 
2.2 Least Squares Support Vector Machine 
 
Least Squares Support Vector Machine (LSSVM) is the improvement of standard Support Vector Machine (SVM). 
SVM was proposed by Vapnik and was firstly used in classification and non-linear function estimation (Zhang et al., 
2009). Nevertheless, the constraint of SVM consists an inequality, which causes complex computation. To solve this 
problem, Suykens and Vandewalle (1999) constructed LSSVM by substituting the insensitive loss function with the 
least squares quadratic loss function (Zhang et al., 2009; Kao et al., 2014). With the quadratic loss function, the 
optimization problem reduces to finding the solution of a set of linear equations (Samui and Kothari, 2011).  
To train the geoidal undulation model by LSSVM, the regression function can be expressed as: 

𝑓𝑓(x𝑖𝑖) = w ∙ x𝑖𝑖 + b  (4) 
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where x𝑖𝑖 is the input value, that is, the plane coordinate of each training point (X ,Y); f(x𝑖𝑖) is the output value, that 
is, the undulation corresponding to the training point; w is the normal to the hyperplane; b is the bias term (Suykens 
and Vandewalle, 1999). 
The optimization problem is given: 

target function: 𝐽𝐽 = 1
2
‖𝑤𝑤‖2 + 𝐶𝐶 ∑ 𝑒𝑒𝑖𝑖2𝑛𝑛

𝑖𝑖=1 → min  (5) 

constraint condition: w ∙ x𝑖𝑖 + b + e𝑖𝑖 = y𝑖𝑖  (6) 

where C is the penalty function used to determine trade-off between minimizing the training errors and minimizing 
the model complexity; e𝑖𝑖 is the error between the actual and predicted output at ith sample point. 
Lagrange multiplier  𝛼𝛼1, 𝛼𝛼2, … … ,𝛼𝛼𝑛𝑛 are introduced to change the function J into a quadratic equation: 

J = 1
2
‖𝑤𝑤‖2 + 𝐶𝐶 ∑ 𝑒𝑒𝑖𝑖2𝑛𝑛

𝑖𝑖=1 − ∑ 𝛼𝛼𝑖𝑖(w ∙ x𝑖𝑖 + b + 𝑒𝑒𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑛𝑛
𝑖𝑖=1   (7) 

To determine the optimal solution for function J, J are derivative by 𝑤𝑤, 𝑏𝑏, 𝑒𝑒𝑖𝑖 and 𝛼𝛼𝑖𝑖 respectively and setting all 
derivatives equal to zero: 
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  (8) 

Eq. (8) can be expressed as the following matrix:  
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�  (9) 

After elimination of 𝑒𝑒𝑖𝑖 and 𝜔𝜔, the following linear equation can be obtained: 

�0 𝑢𝑢𝑇𝑇
𝑢𝑢 𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑇𝑇 + (2𝐶𝐶)−1𝐼𝐼� �

𝑏𝑏
𝛼𝛼𝑖𝑖
� = �0

𝑦𝑦𝑖𝑖
�  (10) 

where x𝑖𝑖 = [𝑥𝑥1, 𝑥𝑥2 … 𝑥𝑥𝑛𝑛]𝑇𝑇 ;  α𝑖𝑖 = [α1,α2 …α𝑛𝑛]𝑇𝑇 ; y𝑖𝑖 = [y1, y2 … y𝑛𝑛]𝑇𝑇 , represents the undulation of each  point; 
e𝑖𝑖 = [e1, e2 … e𝑛𝑛]𝑇𝑇; u = [1,1, … ,1]𝑇𝑇; I stands for the unit matrix. 
After b and α𝑖𝑖 are solved in Eq. (10), a regression function of LSSVM is formed: 

f(x) = ∑ (𝛼𝛼𝑖𝑖𝑥𝑥𝑖𝑖) ∙ 𝑥𝑥 + 𝑏𝑏𝑛𝑛
𝑖𝑖=1   

(11) 

If the input data are nonlinear, LSSVM maps the training samples from the input space into a higher-dimensional 
feature space via a mapping function φ to form a linear problem (Huang and Wang, 2006; Kao et al., 2014; Suykens 
and Vandewalle, 1999). Then the following equation is formed: 

𝑓𝑓(x) = ∑ 𝛼𝛼𝑖𝑖𝜑𝜑(𝑥𝑥𝑖𝑖) ∙ 𝜑𝜑(𝑥𝑥) + 𝑏𝑏𝑛𝑛
𝑖𝑖=1   (12) 

Due to the complex computation in higher dimensional space, the kernel trick is introduced to simplify the calculation 
process. Any function 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) satisfying Mercer’s condition can be used as the kernel function. By selecting an 
appropriate kernel function, the nonlinear relation between points’ plane coordinates and its corresponding undulation 
value based on LSSVM is established (Jung et al., 2015).  
Due to the kernel function 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) equals the inner product of mapping function φ, which is 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) = 𝜑𝜑(𝑥𝑥𝑖𝑖) ∙
𝜑𝜑(𝑥𝑥), Eq. (12) can be expressed as follows: 

f(x) = ∑ 𝛼𝛼𝑖𝑖𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) + 𝑏𝑏𝑛𝑛
𝑖𝑖=1     (13) 

As Mustaffa and others mentioned in 2014, an inappropriate selection of kernel function and the parameters of the 
kernel function may cause the LSSVM prediction model vulnerable to over fitting or under fitting. Therefore, the 
selection of kernel function and the parameters of the kernel function is known to be a key factor in determining the 
performance of the support vector machine. Commonly used kernel function are listed as following table: 
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Table 1. Kernel functions commonly used when appyling LSSVM 

Linear kernel (LIN) K(x, x𝑖𝑖) = x ∙ xi (14) 

where x = (x1, x2, … , x𝑛𝑛) are the training samples  

Polynomial kernel (POLY) 
K(x, x𝑖𝑖) = (x ∙ xi + 𝑡𝑡)𝑑𝑑 (15) 

where d is the order of polynomial; t represents the intercept 
of polynomial.  

Radial basis function (RBF) 

K(x, x𝑖𝑖) = exp (−‖x−x𝑖𝑖‖2

𝜎𝜎2
)   (16) 

where  𝜎𝜎2  is the bandwidth of the kernel function, which 
determines the generalization performance and prediction 
accuracy of RBF (Zhang et al., 2009). 

 

 
 
2.3 Using Genetic Algorithm based LSSVM to establish the undulation model 
 
The parameters of LSSVM play a crucial role in the performance of LSSVM. Nevertheless, inappropriate selection 
of parameters of LSSVM may lead to over-fitting or under-fitting, and further affects the performance (Jung et al., 
2015). So far, there are no guidelines available for parameters selection (Jung et al., 2015). Additionally, it is time-
consuming, blind and difficult to select parameters by ways like cross validation or trial and error(Liu et al., 2014; 
Jung et al., 2015). Therefore, in this study, genetic algorithm (GA) is proposed to optimized the parameters of LSSVM. 
GA was introduced by Holland in 1975. It is a searching method with the concept of Darwin’s theory of natural 
evolution that allows global optimization (Cai et al., 2015; Jahromi and Ameli, 2018). In this study, the detailed 
description of steps of gene encoding, fitness function and evolutionary system for GA-based LSSVM parameters 
optimization were as follows (Yang et al., 2010): 
(1) Fitness function evaluation  
In this study, gene, referred to the parameters of LSSVM (C and 𝜎𝜎2) , are encoded to string of real number, which 
formed a chromosome. At the same time, an initial population of chromosomes with two parameters in their allowable 
ranges is randomly generated. Then, the LSSVM regression function is constructed with the given set of parameters 
(C and 𝜎𝜎2) using the training data set. Then the performance of the set of parameters (C and 𝜎𝜎2) ,which can be 
known as the fitness of an individual, is evaluated by the root mean squares error (RMSE) of reference points and 
check points. 
(2) Selection and genetic evolution 
To select the appropriate parents for reproduction, the chromosomes with large fitness (better individuals) are selected 
with higher probability in the stage of selection. Then new offspring will formed with given crossover rate and 
mutation rate in the stage of genetic evolution. 
(3) Create new generation 
After the genetic operation, the fitness of new offspring would be calculated again. Then the best N results of offspring 
or parents would form new generation. 
(4) GA iteration 
Repeat step (1) to step (3) until the end condition is satisfied or the number of iteration is equal to the presetting 
maximum. 
(5) Termination condition 
When the termination criteria are satisfied, the process ends. Then the LSSVM parameters (C and 𝜎𝜎2) with the best 
fitness are obtained as a result of the algorithm. 
(6) Establishment of undulation model 
Input the plane coordinates and corresponding undulation of reference points and check points as their input and 
output data, and establish the undulation model with LSSVM. 
 
 
2.4 Statistical Analysis Procedures 
 
In order to evaluate the performance of the proposed algorithm, the difference of known undulation 𝑁𝑁𝑖𝑖𝑘𝑘𝑛𝑛𝑘𝑘𝜕𝜕𝑛𝑛 of check 
points and its corresponding estimated undulation 𝑁𝑁𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 are calculated as Eq.(17) expressed. Besides, Root 
Mean Squares Error (RMSE) (shown as Eq.(18) )will be used in this study to evaluate the performance of the proposed 
algorithm. 

∆𝑁𝑁𝑖𝑖 = 𝑁𝑁𝑖𝑖𝑘𝑘𝑛𝑛𝑘𝑘𝜕𝜕𝑛𝑛 − 𝑁𝑁𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑  (17) 
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RMSE = �∑ ∆𝑁𝑁𝑖𝑖×∆𝑁𝑁𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛
  (18) 

where n is the number of the check points; 𝑁𝑁𝑖𝑖𝑘𝑘𝑛𝑛𝑘𝑘𝜕𝜕𝑛𝑛 is the known undulation of the check points; 𝑁𝑁𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 is the 
estimated undulation obtained by either LSSVM or other proposed interpolation methods. 
 
 
3. STUDY AREA AND TEST DATA 
 
The study area in this paper is located in middle of Taiwan. The test data, which included the GPS and leveling data 
of the 283 benchmarks of the middle of Taiwan, was collected between 2000 and 2003 by the Satellite Survey Center, 
Department of Land Administration, Ministry of Interior, Taiwan. The test area size is about 6,321 𝑘𝑘𝑘𝑘2. The GPS 
data were collected by the static GPS surveying method with the accuracy of ±36mm, and the leveling data were 
obtained by the first-order geodetic leveling method with the accuracy of ±8.8mm. (Lin, 2007) 

 
Figure 3. Point distribution map of the 283 benchmarks of the middle of Taiwan. 

 
 
4. DATA ANALYSIS 
 
4.1 Using LSSVM to establish the undulation model  
 
In order to see how different reference points and check points ratio and different kernel function will affect the 
performance of LSSVM, 283 test data distributed in the middle of Taiwan are first separated with 1:1、1:2、1:3、
2:1、3:1 respectively. Then different kernel functions (POLY, LIN and RBF kernel function) are applied with different 
reference points and check points ratio to train and evaluate LSSVM model (that is, the undulation model). According 
to the test results shown in Fig. 4, the best undulation estimation accuracy occurred when applying 1:1 reference 
points and check points ratio and using RBF kernel function. 
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Figure 4. The size of check points’ RMSE when applying POLY, LIN and RBF kernel function to train LSSVM 
model in different reference points and check points ratio. 

 
 
4.2 Using different GA parameters to optimize LSSVM  
 
To see how the different GA parameters set will affect the search of LSSVM parameters and further the performance 
of the undulation model train by GA-based LSSVM. The main parameters of GA like population size, iteration 
number, crossover rate and mutation rate are set different value as table 2 shown. With the initial value of population 
size 10, iteration number 20, crossover rate 0.6 and mutation rate 0.001 (Yang, 1998), the test results are shown as 
table 3. According to table 3, we know that: (1) The larger the population size, the more accurate the undulation 
model. (2) There are no significant relationship between undulation estimation accuracy and its corresponding 
iteration number, crossover rate and mutation rate setting. 

Table 2. GA parameters setting table 
GA parameters Population size Iteration number Crossover rate Mutation rate 

Initial/terminal value 10/500 10/500 0.02/1 0.005/1 
Interval 10 10 0.02 0.005 

Number of GA 
parameters set 50 groups 50 groups 50 groups 200 groups 

Table 3. The size of check points’ RMSE derived by LSSVM(GA) when using different GA parameters 
combinations. 

Population size Iteration number 

  
Crossover rate Mutation rate 

  
To further see the relationship between LSSVM(GA)-derived undulation estimation accuracy (i.e. RMSE of check 
points) and its corresponding LSSVM parameters optimized by GA, all test results are first rearranged according to 
the size of check points’ RMSE from the smallest one to the largest one. Afterwards, the corresponding LSSVM 
parameters are shown as Fig. 5. From Fig. 5, it can be seen that: (1) The performance of LSSVM(GA) can cause 
approximately 4.5 cm difference in accuracy when applying different GA parameters setting. (2) The smaller the size 
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of C and 𝜎𝜎2, the better the LSSVM performance. (3) When C is smaller than 4000 and 𝜎𝜎2is smaller than 0.05 
simultaneously, the undulation estimation accuracy derived by LSSVM is 0.0299m (the best).  

 
Figure 5. The relationship between RMSE and corresponding LSSVM parameters optimized by GA. 

 
 
4.3 Comparison between LSSVM and LSSVM(GA) 
 
Table 4 summarizes the performance of LSSVM before and after optimized by GA.”LSSVM(RBF)” represents the 
undulation regression model establish by LSSVM; ”LSSVM(RBF+GA)” stands for the undulation regression model 
establish by GA-based LSSVM. From Table 4, it can be seen that: (1) After optimizing by GA (LSSVM(RBF+GA)), 
LSSVM(RBF+GA) had improved 42.83% (reduced from 0.0523m to 0.0299m) in accuracy. (2) LSSVM(RBF+GA) 
is more efficient according to the execution time (reduced from 2.014 s to 1.946 s). (3) From the results of F test, 
LSSVM(RBF+GA) had significantly improved when comparing to LSSVM(RBF). 

Table 4. The comparison between LSSVM(RBF) and LSSVM(RBF+GA). 

 
 
5. CONCLUSIONS  
 
In this study, LSSVM is proposed to establish the geoidal undulation model. Additionally, GA is employed to optimize 
the parameter of LSSVM for the purpose of improving the accuracy of undulation model. With the accurate 
undulation model derived by GA-based LSSVM, the orthometric height can be obtained from GPS-derived ellipsoidal 
height instead of conventional spirit leveling. In this study, 283 benchmarks distributed in the middle of Taiwan are 
used as test data. According to the test result, they show that:(1) The best estimated accuracy 0.0523m is obtained 
when applying the RBF kernel function and using 1:1 as reference point and check point ratio. (2) According to the 
relationship between LSSVM parameters (C, 𝜎𝜎2)  optimized by GA and their corresponding performance of 
LSSVM(GA) (i.e. RMSE of check points), it can be seen that when C is smaller than 4000 and 𝜎𝜎2is smaller than 
0.05 simultaneously, using LSSVM(GA) to establish the undulation model can derive the estimation accuracy about 
0.0299m. (3) After optimized by GA (LSSVM(GA)), the accuracy of undulation is improved about 42.83% (reduced 
from 0.0523m to 0.0299m) when comparing to the one which is not optimized. (4) According to the F test, the 
accuracy of undulation estimation is significantly improved after using GA-based LSSVM. 
 
 
6. REFERENCE 
 
1. Cai, Z., W. Xu, Y. Meng, C. Shi, & R. Wang, 2016. Prediction of landslide displacement based on GA-LSSVM 

with multiple factors. Bulletin of engineering geology and the environment, 75 (2), pp. 637-646. 
2. Doganalp, S. and Selvi, H. Z., 2015. Local geoid determination in strip area projects by using polynomials, least-

Estimation method execution time (s) RMSE (m) Imrpovement in RMSE (%) F-test 
(α=5%) 

LSSVM(RBF) 2.014 0.0523 - Reject 𝐻𝐻0 

LSSVM(RBF+GA) 1.946 0.0299 42.83 - 

7



squares collocation and radial basis functions. Measurement, 73, pp. 429-438. 
3. Featherstone, W., 2000. Refinement of gravimetric geoid using GPS and leveling data, J. Surv. Eng., 126 (2), pp. 

27-56. 
4. Gullu, M., Yilmaz, M., and Yilmaz, I., 2011. Application of back propagation artificial neural network for 

modelling local GPS/levelling geoid undulations: A comparative study. In FIG Working Week, pp. 18-22. 
5. Jung, H. C., J. S. Kim, & H. Heo, 2015. Prediction of building energy consumption using an improved real coded 

genetic algorithm based least squares support vector machine approach, Energy and Buildings, 90, pp. 76-84. 
6. Jahromi, M. E. N., and Ameli, M. T., 2018. Measurement-based modelling of composite load using genetic 

algorithm. Electric Power Systems Research, 158, pp. 82-91. 
7. Kavzoglu, T. and Saka, M. H., 2005. Modelling local GPS/levelling geoid undulations using artificial neural 

networks. Journal of Geodesy, 78 (9), pp. 520-527. 
8. Kao, S. P., C. N. Chen, H. C. Huang, & Y. T. Shen, 2014. Using a least squares support vector machine to estimate 

a local geometric geoid model, Boletim de Ciências Geodésicas, 20 (2), pp. 427-443. 
9. Lin, L.S., 2007. Application of a Back-Propagation Artificial Neural Network to Regional Grid-Based Geoid 

Model Generation Using GPS and Leveling Data, Journal of Surveying Engineering, 133(2), pp. 81-89. 
10. Lin, L.S., 2014. Orthometric Height Improvement in Tainan City using RTK GPS and Local Geoid Corrector 

Surface Models, Journal of Surveying Engineering, 140(1), pp. 35-43. 
11. Liu, L. L., T. X. Zhang, M. Zhou, W. Wang, & L. K. Huang, 2014. Research of GPS elevation conversion based 

on least square support vector machine and BP neural network, Applied Mechanics and Materials, 501, pp. 2166-
2171.  

12. Mårtensson, S. G., 2002. Height determination by GPS: Accuracy with respect to different geoid models in 
Sweden. In XXII FIG International Congress, April 19-26 2002, Washington, DC, USA, pp. 106-113. 

13. Mustaffa, Z., Yusof, Y. and Kamaruddin, S. S., 2014. Gasoline price forecasting: an application of LSSVM with 
improved ABC. Procedia-Social and Behavioral Sciences, 129, pp. 601-609. 

14. Stopar, B., T. Ambrožič, M. Kuhar & G. Turk, 2006. GPS-derived geoid using artificial neural network and least 
squares collocation, Survey Review, 38 (300), pp. 513-524.  

15. Suykens, J.A.K. & J. Vandewalle,1999. Least Squares Support Vector Machine Classifiers, Neural Processing 
Letters, 9 (3), pp. 293-300. 

16. Samui, P. and Kothari D. P., 2011. Utilization of a least square support vector machine (LSSVM) for slope 
stability analysis. Scientia Iranica, 18(1) , pp. 53-58 

17. Yang, Z., X. S. Gu, X. Y. Liang, and L. C. Ling, 2010, Genetic algorithm-least squares support vector regression 
based predicting and optimizing model on carbon fiber composite integrated conductivity. Materials & Design, 
31 (3), pp. 1042-1049. 

18. Zhang, W., Li, C., and  Zhong, B., 2009,  LSSVM parameters optimizing and non-linear system prediction 
based on cross validation. In 2009 Fifth International Conference on Natural Computation. 1, pp. 531-535 

19. Jahromi, M. E. N., and Ameli, M. T., 2018. Measurement-based modelling of composite load using genetic 
algorithm. Electric Power Systems Research, 158, pp. 82-91. 

8




