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ABSTRACT: Point clouds are increasingly employed as a prime data source for 3-D geo-information related 
applications. Point cloud generated through dense image matching has recently gained its popularity in depicting 3-D 
scene through estimating disparity, depth information, of a stereo pair on pixel-wise basis. Considering the geometry 
and complexity of the scene, it is necessary to configure image acquisition in way of multiple views with highly 
overlapping requirement in favor of stereo image matching. Yet, an efficient as well as effective way of conducting 
dense image matching through multiple views and refining the point cloud to well depict the scene still awaits 
implemented. This study presents a strategy for improving calculation efficiency and reconstruction quality, focusing 
on delivering reliable disparity values between different pairs and attributing the point cloud. By fixing the chosen 
reference image, the stereo pairs are sequentially formed with increasing baseline, thus providing the better intersection 
geometry. And the initial disparity propagated from the first pair for the second pair afterwards gains good prediction 
with narrower searching area to not only reduce the computational load but also higher the disparity reliability. The 
combined effect by the proposed approach brings smoothing effect in disparity continuous areas and sharpens the 
geometric features. Moreover, not only the 3-D coordinates and the precisions of the point clouds have been calculated 
through intersection of the conjugate points, but also the feature attribute for each point has been assigned based on the 
geometric information analyzed when executing dense image matching and point clouds. With all of these, mistaken 
points in point clouds can be removed or weakened for their follow-up applications, and the refinement of point cloud 
can be realized by using less points to well preserve scene geometry on specific demand. 

 
1. INTRODUCTION 

 
The 3-D scene or object reconstruction through dense point clouds has been seen in various fields, for example, land 
survey, urban planning, landscape analysis, and even culture heritage survey and preservation (Dall'Asta & Roncella, 
2014). Over the past years, LiDAR system has played the major role in providing dense point clouds. With recent 
advances in computer vision, stereo image matching automatically calculates the disparities of conjugate points on 
a pixel-wise basis and offers an efficient way of reconstructing the scene. Highly overlapping images are required in 
favor of stereo matching with scenes delicately described in demand, therefore, image acquisition configured in 
multiple views becomes a necessity when carrying out 3-D scene/object reconstructions (Haala, 2011; Yan et al., 
2016). 
  
Methods of automatic stereo pairs matching can be classified into three categories, local matching, global matching 
and semi-global matching (Hirschmüller, 2005 and 2008). Currently, semi-global matching (SGM) has been 
tremendously utilized in 3-D reconstruction tasks as it possesses the advantages of both operational efficiency and 
sufficient matching accuracy. Many easily accessible software applies dense matching algorithms to produce 3-D 
geo-information, including SURE, Agisoft PhotoScan, Pix4D, and MicMac, just to name a few. When processing 
multiple-viewed images, redundant point clouds supply a great amount of data enhancing the scene description, yet 
the reconstructed integrity also suffers from varied levels of positioning errors owing to the different intersection 
angles of participated image pairs. Figure 1 shows a plane rendered by multi-pair matched point clouds with 
significant uncertainty. Furthermore, when matching multiple stereo pairs, it would take long to get disparity values 
if each pair is to be processed independently (Rothermel et al., 2012). It also shows in our previous study (Liu and 
Jaw, 2019) that matching in short-baseline pair is easier to achieve high successful rate than that in longer-baseline 
case. However, the latter would provide higher positioning quality than the former. The breakthrough to this dilemma 
must tackle the two technical issues: (1) how to deliver the reliable disparity effectively between different pairs; and 
(2) how to refine the number of point clouds taking the quality and quantity indicators into consideration. Many 
approaches of matching multiple images have been developed. Some methods tend to preselect for each part of the 
reconstructed scene in a single pair, satisfying the expected accuracy. Other methods focus on the result of disparity 
and point clouds due to consistency constraints in depth discontinuities, rejecting outliers and noise in matching 
(Dominik, 2017).  
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Figure 1. Point clouds of a plane from multi-pair matching (with B the baseline and D the object distance) 
(Modified from (Liu and Jaw, 2019))  

 

To resolve the afore-mentioned two technical issues, an appropriate procedure in optimizing matching algorithms 
and allowing for fewer point clouds depiction but features preserved has to be proposed. As a result, this study 
presents a strategy by fixing the chosen reference image, and stereo pairs are sequentially formed with increasing 
baseline. It follows that the matching from the low base-object distance (B/D) pair would be utilized to predict the 
corresponding location in longer B/D pair to improve the disparity approximation, making better disparity estimation 
and more reliable matching result. Besides, both the geometric and radiometric attributes of the points have to be 
recorded to the subsequent point refinement task. To implement such an idea, an effective estimation and delivery 
of disparity uncertainty must be arranged and the specific storage of the point cloud has to be designed, which are 
all to be detailed in the following section.  
 
2. METHODOLOGY  
 
The strategy considered for effectively carrying out dense image matching while improving the point cloud quality 
is proposed to include the several procedures. As it is preferred, the epipolar image pairs are first resampled from 
the original images. To take a straight forward error propagation treatment, the exterior orientation parameters and 
errors of the epipolar images are derived based on the transformation from the original to normalized images. The 
intersections of conjugate points upon stereo matching on a low B/D pair can be directly applied by using epipolar 
images to obtain the 3-D coordinates of object points and their variance-covariance matrices. With the better 
information of object points, the corresponding image point locations in the larger B/D pair can be better predicted 
to narrow down the search extent of disparity, thus making a more efficient and reliable matching realization. The 
conceptual workflow for the proposed disparity delivery scheme can be seen in Figure 2. The technical 
implementation is given as follows: Section 2.1 describes epipolar images reconstruction from rotating original 
images and resampling, and Section 2.2 shows algorithms in matching for obtaining conjugate points. Section 2.3 
introduces a mathematical model to provide indicators at point clouds. Section 2.4 presents a strategy to narrow the 
searching area. 
 

 
 

Figure 2. Flow chart of proposed strategy for disparity delivery 
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2.1 Generating Epipolar Images  
 
The construction of epipolar geometry is crucial to enabling the matching along the row direction, deemed as a 
standard procedure for stereo matching. The transformation introduced in Schenk (1999) from original to epipolar 
images (or normalized images) is employed. The net effect is to fix the perspective center and rotate the original 
images to the normalized ones with new but the same angles for the pair. The intensities of the epipolar images are 
attained by undertaking resampling in the original images. The rotating procedures of making epipolar images and 
the calculation of corresponding angles are shown in Eqs. (1) to (3): 
 

𝑀"#$%$&'() = 𝑀+(,#'%-# ∗ 𝑀"
/ 

𝑀0#$%$&'() = 𝑀+(,#'%-# ∗ 𝑀0
/ 

(1) 

  

1
𝑀" = 𝑀"2 ∗ 𝑀"3 ∗ 𝑀"4
𝑀0 = 𝑀02 ∗ 𝑀03 ∗ 𝑀04

𝑀+(,#'%-# = 𝑀56 ∗ 𝑀57 ∗ 𝑀58

 (2) 

 
where (𝐿:, 𝐿<, 𝐿=), ?𝑅:, 𝑅<,𝑅=A are the angle sets of left and right original images; (𝜃C, 𝜃D, 𝜃E) are the 
angles of epipolar pair and can be computed by Eq. (3). 
 

 

																																		

⎩
⎪
⎨

⎪
⎧ 𝜃C = 𝜔#$% = (𝐿= + 𝑅=)/2

𝜃D = 𝜙#$% = tanTU(−𝐵E/X𝐵CY + 𝐵DY)

𝜃E = 𝑘#$% = tanTU(𝐵D/𝐵C)

 , [
𝐵C = 𝑋0 − 𝑋"
𝐵D = 𝑌0 − 𝑌"
𝐵E = 𝑍0 − 𝑍"

																																													 (3) 

   
With (𝑋", 𝑌", 𝑍"), (𝑋0, 𝑌0, 𝑍0) the positions of perspective centers for left and right images, respectively. 

 
Concerning the accuracy and variance-covariance matrix of observations, Eqs. (4) and (5) are employed to perform 
parameters estimation with 𝐹: functional model; 𝑙: observations, including the perspective centers of and rotation 
angles with respect to X-axis (𝜔", 𝜔0 ); 𝐹b(c&+% : partial derivative matrix of 𝐹  with respect to observations; Σe : 
variance-covariance matrix of observations, the explicit quality estimation of epipolar pair. 
 

𝐹(f∗U) = [𝑋" 𝑌" 𝑍" 𝑋0 𝑌0 𝑍0 𝜃h 𝜃i 	𝜃j]/ 

𝑙(U∗l) = [𝑋" 𝑌" 𝑍" 𝜔" 𝑋0 𝑌0 𝑍0 𝜔0] 
(4) 
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(5) 

2.2 Dense Image Matching Via SGM  
 
With tremendous progress in photogrammetric and computer vision, the search for conjugate points in a stereo pair 
is realized by dense image matching algorithms, which divided into four steps: cost computation, cost aggregation, 
disparity computation and refinement of disparities. This study tackles the sum of absolute difference (SAD) to 
quantify radiometric quality between images, and smooths disparities through aggregating the neighboring 
information by semi-global matching. It introduces a modified hierarchical strategy, thus image pyramids, to run 
efficiently and decrease memory demands (Rothermel et al., 2012). Meanwhile, the quality of disparities is 
maintained. Then, the Winner Take All (WTA) strategy is applied to choose minimal cost value as its correspondent 
disparity, and followed by median filter to remove remaining irregularities.  
 
SAD is a function of parametric matching cost in local methods, which assumes brightness constancy for 
corresponding pixels. The SAD is commonly used with high computation efficiency, especially for the repeated 
texture images. On the other hand, the weakened object boundaries bringing about unclear depth estimations and 
readily affected by the slight radiometric differences are the negative side of SAD (Hirschmüller＆Scharstein, 2009). 
Yet, integrating SAD into SGM and going through cost aggregation (Figure 3 (b)) would perform robustly against 
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outlier that occur in window-based methods. This study executes SGM in eight direction constraints and adds penalty 
parameters 𝑃U, 𝑃Y for disparity changes, with 2𝑃Y = 	𝑃U .   

 
(a) (b) 

 
Figure 3. (a) Cost computation, (b) Aggregation in 8 paths 

                                                   
2.3 Forward Intersection  
 
After obtaining the depth map from SGM, conjugate points in image pair are found and forward intersection by 
minimizing observations errors using generalized least-squares adjustment method is implemented to get 3-D 
coordinates of object points and their variance-covariance matrices. To simplify the expression, let G represent the 
collinearity equation of epipolar imagery. The convergent least-squares solutions are determined by Eqs. (6) and (7), 
with 𝐵: partial derivative matrix of 𝐺 with respect to observations; 𝐴: partial derivative matrix of 𝐺 with respect the 
unknows; 𝑒: vector of error; ξ: vector of unknows; 𝑤: vector of discrepancy; Σ: variance-covariance matrix of 
observations; 𝜎}: a priori standard deviation of unit weight; 𝑃: weight matrix; ξ~: estimation of unknows; 𝑒̃: vector 
of residuals; 𝜎�}: a posteriori standard deviation of unit weight; 𝑟: redundancy; Σ��: a posteriori variance-covariance 
matrix of estimated unknows. 
 

𝐵𝑒 + 𝐴ξ = 𝑤,	 𝑒~(0, Σ = 𝜎}Y𝑃TU) (6) 
  

⎩
⎪
⎨

⎪
⎧ ξ~ = (𝐴/(𝐵𝑃TU𝐵/)TU𝐴)TU𝐴/(𝐵𝑃TU𝐵/)TU𝑤

𝑒̃ = 𝑃TU𝐵/(𝐵𝑃TU𝐵/)TU(𝑤 − 𝐴ξ~)

𝜎�} = �𝑒̃
/𝑃𝑒̃
𝑟 	 , Σ��(�∗�) = 𝜎�}

Y(𝐴/(𝐵𝑃TU𝐵/)TUA)TU
 

 

(7) 

To supply sufficient information for refining point clouds, this study also proposes storing several parameters and 
indicators to value both the quantity and quality of point clouds. At the current stage, 𝜎�}, ξ~ and Σ�� are included. 
Furthermore, Edge Drawing algorithm (Topal & Akinlar, 2012) together with modified SNR indicators (Chiu, 2018) 
are considered to store the related information of edge features. 
 
2.4 Disparity Delivery  
 
According to Eq. (8), where f is the principal distance of the camera, the disparities of nearest and farthest object 
distances can be calculated to bound the searching region. Therefore, if the scene knowledge is too rough, the extent 
of disparity will be too large and easily results in heavy computational load as well as low matching reliability. 
 

𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 = 𝑓 ∗
𝐵
𝐷 

 
(8) 

To cope with the wide search extent of disparity and provide better intersection geometry, the strategy in delivering 
reliable disparity is fulfilled with propagating the matching result from the low B/D pair to the larger B/D ones. The 
3-D coordinates (X, Y, Z) of those points intersected from low B/D pair would be projected to the larger B/D pairs 
to obtain the image locations, specifically for the row (x) component, as formulated in Eq. (9). Also the errors of the 
image locations can be quantified by propagating the associated errors using Eq. (10).  
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(𝑋#$%, 𝑌#$%, 𝑍#$%, 𝜔#$%, 𝜙#$%, 𝑘#$% ), ( 𝑥}, 𝑦},𝑓 ), and 	(𝑚#$%_UU,𝑚#$%_UY,… . .𝑚#$%_�� ) are the exterior orientation 
parameters, interior orientation parameters, and rotation elements of epipolar image, respectively, while 𝐻b(c&+% is 
the partial derivative matrix of H with respect to observations. Although each object point has its own uncertainty, 
thus the disparity error, the estimated disparity extent with the most depth error is adopted and set for the whole 
target area just for the current implementation to simplify the computation. Nevertheless, the range of disparity 
uncertainty through the proposed approach would gain effective reduction and benefit the SGM result with more 
success and higher reliability, as demonstrated in the following experiments.  
 

𝐻(U∗U) = 𝑥( = 𝑥} − 𝑓
𝑚#$%_UU?𝑋 − 𝑋#$%A + 𝑚#$%_UY?𝑌 − 𝑌#$%A + 𝑚#$%_U�(𝑍 − 𝑍#$%)
𝑚#$%_�U?𝑋 − 𝑋#$%A + 𝑚#$%_�Y?𝑌 − 𝑌#$%A + 𝑚#$%_��(𝑍 − 𝑍#$%)

 

𝑙(U∗UY) = [𝑋 𝑌 𝑍 𝑋#$% 𝑌#$% 𝑍#$% 𝜔#$% 𝜙#$% 𝑘#$% 𝑥} 𝑦} 𝑓] 

(9) 

  
Σ�(U∗U) = 𝐻b(c&+%Σ'(UY∗UY)𝐻b(c&+%/ = �𝜎h�

Y� 
 

(10) 

2.5 Point Cloud Refinement 
 
This study implements the strategy mentioned in Section 2.4 by passing the disparity gained from low B/D pair into 
larger B/D ones. Through projecting the 3-D coordinates determined from matching in low B/D pair onto the images 
of larger B/D pairs, not only the uncertainty of searching region is reduced to support more efficient computation 
but also help find the conjugate image point pair with better intersection geometry in refining the point cloud as 
compared to the points produced in low B/D pair and larger B/D one without enforcing disparity delivery strategy. 
It may be followed to fuse the point clouds from low and large B/D pairs to comprehend the scene description taking 
the recorded attributes suggested in this study into consideration, thus the refinement in more general goal to 
highlight the salient features in the most simplified way with light data amount can be realized. 
 
3. EXPERIMENTS AND RESULTS 
 
3.1 Equipment and Image Acquisition 
 
To verify the proposed method, an indoor scene 120 cm (height) x 70 cm (width) with depth of -0.659 m to -0.264 
m for 3-D reconstruction in NTU lab, as shown in the images of Table 2, was deployed.  Control points needed for 
orientation solution were measured by the Trimble M3 DR2 total station with distance precision about 3mm+2ppm 
and the angle precision 2’’. Images were acquired by Canon EOS70D camera and the exterior orientation with self-
calibration was performed by Agisoft PhotoScan. The imaging configuration can be seen in Table 1 while Table 2 
and Table 3 show the estimated orientation parameters and quality of observations, respectively, utilized for the test.   
 

Table 1. Imaging configuration 

 

Image size (pixel) 480*720 
Pixel size (mm) 0.0317 

Principal distance (mm) 50 
Object distance (cm) 160-200 

GSD(mm) 1 
Overlap (%) 80 

Baseline (cm) 14.5 
 

Table 2. Experimental datasets 
Img_1 Img_2 Img_3 

   
Position of exterior orientation (Unit: m) 

𝑋 = -0.17064 𝑋 = -0.03905 𝑋 =  0.09875 
𝑌 =  0.47807 𝑌 =  0.46538 𝑌 =  0.43053 
𝑍 = -0.24116 𝑍 = -0.23872 𝑍 = -0.23838 
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Pose of exterior orientation (Unit: °) 
𝜔 =  82.52705 𝜔 =  82.66459 𝜔 =  82.52830 
𝜙 = -14.33890 𝜙 = -12.67951 𝜙 = -10.69190 
𝑘 =  -0.67945 𝑘 =  -0.67522 𝑘 =  -0.55789 

 
The employed Agisoft PhotoScan does not give the quality information of orientation parameters. The authors 
considered the alignment result with the utilized control points and set the empirical errors of parameters, seen in 
Table 3, also regarded as observations in generalized least-squares adjustment sense for the follow-up processes.  
 

Table 3. The observation errors 
Observation Error 

Image point 𝑥(, 𝑦( 	±	0.0317 mm 
Position parameter 𝑋", 𝑌", 𝑍", 𝑋0, 𝑌0, 𝑍0	 ±	0.005 m 

Pose parameter 𝜔", 𝜑", 𝜅", 𝜔0, 𝜑0, 𝜅0	 ±	0.0005 °  
Interior orientation parameter 𝑥}, 𝑦}, 𝑓 ±	0.003 mm 

 
To implement the effective computation based on the algorithms proposed in this work, it is the authors’ effort to 
develop the needed codes in MATLAB_R2017b platform, including epipolar imagery generation, forward 
intersection, disparity delivery, and modification of SGM.    

 
3.2 Generating Epipolar Images 
 
The epipolar images were generated based on the procedures introduced in section 2.1. Two pairs, (Img_1, Img_2) 
and (Img_1, Img_3), with their pose parameters and errors were estimated and are given in Table 4.  Note that the 
position parameters of the epipolar images remain the same as the original images because only rotation involves 
when transforming the original images to epipolar ones. To visually validate the row-to-row correspondence of 
epipolar images, the selected feature points shown in Table 5 confirm the satisfaction. To start with the SGM, initial 
disparity between Img_1 and Img_2 (Pair1) was set as 140 pixels and Img_1 and Img_3 (Pair2) 290 pixels based on 
the scene knowledge.  
 

Table 4. Pose parameters and errors of epipolar images 
 Pair1 Pair2 

Value Error Value Error  
𝜔(°)  82.59585 ±0.0004 82.52770 ±0.0004 
𝜑(°)  -1.05738 ±3.0641 -0.58226 ±1.4810 
𝜅 (°)  -5.50834 ±3.0646 -10.00825 ±1.4811 

 
Table 5. Visual check of row to row correspondence 

Feature point point1 point2 

Epipolar 
image 
(Pair1) 

 
(row, column) (428, 670) (428, 530) (468, 670) (468, 530) 

Disparity 140 140 

Epipolar 
image 
(Pair2) 

 
(row, column) (330, 662) (330, 372) (376, 664) (376, 375) 

Disparity 290 289 
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3.3 Disparity Delivery 
 
To demonstrate how the proposed scheme works within limited pages, the reconstruction of adjacent plane features 
and geometric edges, as shown in Figure 4 (c), with about 85,000 points were highlighted for quality analysis.  
 
3.3.1 Assessment in low B/D pair: According to the result of point clouds in low B/D pair, the maximum 
uncertainty in the depth direction is ±0.1039 m. And the error propagation through projection finds about 14 pixels 
disparity uncertainty along the epipolar line in the larger B/D pair, a significant improvement in disparity 
approximation as compared to the value of 290 pixels without placing disparity delivery strategy. Thus much lighter 
computation load would be expected due to the effective support of disparity delivery.  
 

 
(a) 

 
(b) 

 
(c) 

Figure 4. (a) The depth map of lower B/D pair; (b) The point clouds production in lower B/D pair; (c) The 
highlighted features 

 
3.3.2 Visual assessment: Visual analysis of depth maps in Figure 5 elucidates that the proposed strategy performs 
better in rendering planes than the traditional method where disparity results only from scene knowledge. Besides, 
it also shows that the geometric edges are more preserved in the proposed method as compared to the traditional one 
(Figure 6). In our current implementation, disparities out of quality based on the error estimation bounded by the 
uncertainty determined through the proposed algorithms have been eliminated.    
 

 
(a) 

   
(b) 

   
(c) 

   

Figure 5. The highlight of a plane (a) the original image; (b) depth map by the traditional method; 
 (c) depth map through the proposed strategy 
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(a)    

(b) 
   

(c) 
   

Figure 6. The highlight of geometric edge features (a) the original image; (b) depth map by the traditional method; 
(c) depth map through the proposed strategy 

 
The number of points generated for large B/D pair in the traditional methods is about 33,827, one and half times less 
than the point number of area, thus most of matching results are considered as outliers. The fewer points, fragmented 
and hardly distinguishable, prevent the scene from even partially complete reconstruction. In contrast, with the 
proposed strategy, the total number of points is about 53,737, depicting the scene with more quality points and 
outlining the geometric features more explicitly, as seen in Figures 7 and 8. In other words, the proposed strategy 
can be used to provide the better geometric features with the improved quality and quantity of the point cloud.  
 

 
(a) 

 
(b) 

  

Figure 7. Point clouds of a plane (a) by the traditional method; (b) through the proposed strategy 
 

 
(a) 

 
(b) 

  

Figure 8. Point clouds of geometric edge features (a) by the traditional method; (b) through the proposed strategy 
 
3.3.3 Runtime analysis: In addition to the qualitative performance of different procedures in depth map production, 
the runtime can also be an important issue to be analyzed. All codes developed in MATLAB were focusing on 
enabling the smooth computation of the proposed algorithms without putting too much effort into optimization goal. 
The runtime was measured on a 3.2 GHz Core CPU using the pair size of 480*720 and the disparity range was given 
as 290 pixels in the traditional method, 14 pixels in the proposed strategy. As it can be seen in Table 6, the proposed 
strategy allows time savings up to seventy percent in the SAD algorithms, and ninety-six percent in SGM algorithms, 
which accounts for the vast majority of the whole computation.  
 

Table 6. Comparison of runtime (Unit: Second) 
 Traditional method Proposed strategy 
SAD 1.754025 0.549860 
SGM 1395.432240 52.076873 
Total 1421.759564 52.680165 

 
4. CONCLUSION AND SUGGESTION 
 
Multi-view stereo matching provides tremendous observations through different pairs of images, bringing about 
complimentary scene information. This study proposes an effective disparity delivery strategy to accelerate the dense 
image matching and at the same time improve the point cloud in both quality and quantity. The primary tests 
demonstrate the promising results and encourage us to further work in gathering more pairs, as the practical situation, 
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with a general way of delivering disparity.  Yet, at current stage, there is no valid evaluation method to illustrate the 
reliability of matching results, thus easily delivering invalid information to approximate conjugate point of larger 
B/D pair. The problem may find that the real conjugate point is not located in the given searching region. As a result, 
establishing complete matching algorithms to calculate correct and reliable disparity value and mechanism for 
detecting outliers are the key point in fully exploiting the proposed strategy. 
 
Moreover, fusing the point clouds from low and large B/D pairs to comprehend the scene description taking the 
recorded attributes suggested in this study into consideration awaits implemented to refine the point cloud at the 
attribute levels that fit to the application needs. 
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