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ABSTRACT: Visual Odometry (VO) is a technique to estimate platform motion using an image sequence. This is 
one of promising image processing techniques because it uses only images at relatively low cost. However, for the 
same reason, this technique’s accuracy becomes sensitive to imaging geometry. In this study, we analyze the accuracy 
with two conditions: Field of View (FOV) of images used for experiments, and baseline, the distance between two 
imaging locations. The Photogrammetric Stereo Visual Odometry (PSVO) developed in this paper performs feature 
extraction and matching, feature optimization, and photogrammetric motion estimation. For experiments, we used a 
dataset provided by Karlsruhe Institute of Technology and Toyota technological Institute (KITTI) community and a 
dataset acquired with our platform. Our dataset is called Inha dataset and has a smaller FOV and a longer moving 
distance per frame than KITTI dataset. We compared the results depending on imaging geometry and performed 
visual inspection of feature matching and accuracy verification. In the experimental results, as FOV decreases, the 
estimation errors tended to increase. Also, the longer moving distance per frame, the worse performance of outlier 
filtering, especially Random Sample Consensus (RANSAC). Through these experiments, we observed that not only 
the status of features, but also imaging geometry was critical factor and the general RANSAC filtering was not 
suitable for VO. This paper proposes the importance of imaging geometry and feature optimization in VO. 
 
1. INTRODUCTION 
 
Stereo Visual Odometry (SVO) estimates platform motion from a stereo image sequence. It is one of interest in the 
various fields where positioning is necessary, such as autonomous driving and robotics. This technique quantifies 
platform translation like an odometer and rotation like an Inertial Measurement Unit (IMU) simultaneously. Thus, 
it has a great advantage that the both motion factor is estimated at low cost. But since it uses only images, its 
accuracy becomes sensitive to imaging geometry and condition. For example, even if this technique estimates the 
motion on a same path, the result may vary depending on the conditions, such as camera specifications, frame 
intervals and camera placement. Therefore, we need to analyze SVO accuracy for some situations. 
Estimation of geometry with images, such as SVO and Aerial Triangulation (AT), generally uses features on an 
image as observed values (Jung et al., 2016). Therefore, it is important to extract a lot of features on image and then 
select precise ones. In Karlsruhe Institute of Technology and Toyota technological Institute (KITTI) community 
(Geiger et al., 2013), there have been many researches on Visual Odometry (VO) to extract correct features without 
any outliers on image. Stereo Odometry algorithm relying on Feature Tracking (SOFT2) (Cvišić et al., 2018) 
technique performed Simultaneous Localization and Mapping (SLAM). This technique selected correct features 
using prediction value with Inertial Measurement Unit (IMU) sensor, a model for velocity assumption, and 
Normalized Cross Correlation (NCC) algorithm. For this technique, there may be a restriction by additional cost for 
IMU and proper model selection. The RotRocc+ (Buczko and Willert, 2016) technique extracted inliers by a model 
for restrictive motion and decoupling the optical flow within image. Sometimes outliers may be included in inliers 
once the restriction model was improper to the imaging geometry. Circular Fast Retina Keypoint (FREAK) - 
Oriented Fast and Rotated Binary Robust Independent Elementary Feature (CFORB) (Mankowitz and Rivlin, 2015) 
technique matched features using the circular matching based Gauss-Newton Optimization and removed outliers by 
continuing to apply Random Sample Consensus (RANSAC) (Wu and Fang, 2007). For this technique, it was 
difficult to determine stop condition for iterative RANSAC filtering and the performance may vary by the model 
appropriacy for RANSAC filtering. Also, techniques recently listed in KITTI community carried out feature 
optimization by careful feature selection (Zhang, 2019), loop closure detection and optical flow check (Bultmann 
et al., 2019), and multiple sensor (Qin et al., 2019). As these techniques, Most of VO research focus on feature 
optimization for accuracy improvement. In this study, we focus to apply photogrammetric feature optimization and 
bundle adjustment to VO technique. 
This study proposes Photogrammetric Stereo Visual Odometry (PSVO) technique and shows its accuracy according 
to Imaging geometry. This paper shows experiment datasets, a method with algorithm, experiment results, 
discussion and conclusions. 
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2. MATERIALS AND METHODS 
 
We used the KITTI sequence 03 provided by the KITTI community and Inha dataset acquired by ourselves. The 
vehicle for KITTI dataset is shown in (a) of Figure 1, and for Inha dataset is shown in (b) of Figure 1. 
 

 
 

(a) 

 
 

 
 

(b) 
Figure 1. (a) Vehicle for KITTI dataset; (b) Vehicle for Inha dataset 

 
For the KITTI dataset, while maintaining about 0.5m intervals between frames, it was constructed in urban areas. It 
contains stereo image sequences with Point gray flea 2 video cameras, Interior Orientation Parameters (IOP) and 
truth for the poses with OXT RT 3003 as in (a) of Figure 2. The Field of View (FOV) is about 120 degrees and the 
baseline between stereo cameras is about 0.5m.  
For the Inha dataset, while maintaining about 3.5m intervals between frames, we constructed it in Inha University 
in Korea using BRIO Ultra High Definition (HD) Pro Webcam and Trimble BD910 as in (b) of Figure 2. The FOV 
is about 80 degrees and the baseline is about 0.2m. 
 

 
 

(a) 

 
 

(b) 
Figure 2. (a) KITTI sequence 03 trajectory; (b) Inha dataset trajectory 

 
The flowchart of the proposed technique is as in Figure 3. First, we extracted features on stereo image pairs and 
matched them. For the feature extraction and matching, there have been a lot of methods, whose processing time 
and result are different depending on image condition. Therefore, we compared the processing time and result 
according to several method combinations. Second, we optimized features using three methods: Photogrammetry-
based Feature Optimization (PFO), Vision-based Feature Optimization (VFO), and Statistic-based Feature 
Optimization (SFO). As mentioned in Section 1, we focused to apply PFO for outlier elimination. For the PFO 
method, it checks the projection and reprojection errors based photogrammetry. For the VFO method, it eliminates 
the outlier using sequentially RANSAC filtering within multiple images. For the SFO method, it continues to detect 
the outlier through data snooping as statistical posteriori. Finally, we estimated the platform motion using 
photogrammetric bundle adjustment. The details are given in the subsections. 
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Figure 3. Overview of the proposed technique 

 
2.1 Feature Extraction and Matching 
 
The corresponding point is extracted through feature extraction and feature matching. For feature extraction method, 
it extracts corner points as features on the image. There are representative feature extractors provided by OpenCV 
and have different characteristics, such as scale invariability and optical flow. For feature matching method, it 
matches the features based pairwise matching or sequential tracking. Pairwise matching algorithm matches the 
features more accurately and sequential tracking algorithm tracks the corresponding points more quickly. We have 
studied the feature extraction and matching methods and chose the Shi-Thomasi corner-KLT tracker method 
because it speedily tracked a lot of corresponding points as in Table 1 (Yoon and Kim, 2019). 
 

Table 1. Corresponding point extraction performance 

Method Algorithm combination 
Number of points per time  

(num./ sec.) 

Pairwise matching 

SIFT-SIFT-BruteForce 1223.30 

SURF-SURF-BruteForce 2635.92 

FAST-BRISK-FLANN 15209.61 

FAST-ORB-FLANN 29101.80 

FAST-FREAK-FLANN 28143.88 

Sequential tracking 
FAST-KLT tracker 94782.52 

Shi-Thomasi corner-KLT tracker 180708.18 
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2.2 Feature Optimization and Motion Estimation 
 

 
Figure 4. PFO method concept diagram 

 
In the proposed technique, feature optimization performs three methods: PFO, VFO, and SFO. For only the first 
stereo pair, this method carries out feature optimization except PFO because it needs the previous motion. 
For the VFO, it performs RANSAC filtering applying 5 point-based essential matrix assumption model. VFO 
method filters the features on the stereo pairs circularly and defines the detected inliers as the first candidate features. 
Also, the EOP is calculated, used in motion estimation as initial value. 
As in Figure 4, the core concept of PFO is projection and re-projection error calculation based photogrammetry. 
Using the Exterior Orientation Parameters (EOP), PFO method calculates 3D model points within stereo image 
pairs. Then, it projects the model points from the previous to current model space using the estimated motion. At 
this time, the distance between original and projected model points is called projection error. Next, it re-projects the 
model point on the current model space onto the previous image space. At this time, the distance between original 
and re-projected image points is called re-projection error. It selects the correct features according to these sizes and 
defines these as the second candidate features. 
For the SFO, it checks the features through data snooping of statistical posteriori method. SFO method proceeds 
with motion estimation method for statistical analysis. After motion estimation method, it calculates test statistic 
according to Equation (1) and (2), and detects outliers by one-tailed test. It removes the feature one by one with the 
greatest outlier iteratively until there is no outlier. Finally, this method defines inliers as the optimal features. 

 

𝑄௩௩ = 𝑊ିଵ − 𝐴𝑄௫௫𝐴்  

        = 𝑊ିଵ − 𝐴(𝐴்𝑊𝐴)ିଵ𝐴்  
(1) 

𝑡௜ =
𝑣పഥ

𝑆଴

=
|𝑣௜|

𝑆଴ඥ𝑞௜௜

 (2) 

 
where  ti is test statistic of ith observation, Qvv is cofactor matrix of residuals, Qxx is cofactor matrix of unknown 
parameters, W is weight matrix, A is coefficient matrix, vi is residual of ith observation, qii is ith diagonal element 
of Qvv, and S0 is unit standard deviation. 
Motion estimation method uses absolute orientation using photogrammetric collinearity condition. To perform Least 
Squares Estimation (LSE), this method is structed as linear matrix form by linear approximation. It first utilizes the 
LSE with the second features until SFO is finished. Then, it re-estimates the platform motion using the optimal 
features and finally multiplies by the previous matrix to calculate the motion. 
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3. Experiment results 
 

   
(a) (b) (c) 

Figure 5. Feature matching results on Inha dataset 
 
We first experimented PSVO with Inha dataset. In the experiment, the initial number of features was small on 
average. Additionally, there were problems that feature filtering did not work properly as in Figure 5. As a result, 
unlike our experiment with KITTI dataset, it showed gross errors on the motion estimation. 
Then, we analyzed the PSVO performance according to FOV and the distance per frames using KITTI dataset. We 
set 7 experiment cases as Table 2 and checked translation error (%), rotation error (degree per meter), standard 
deviation, and processing time. 
 

Table 2. Experiment case on this study 

Experiment 
case 

Purpose 
Image size  

(width × height; pixel) 
FOV 

(degree) 
Distance  

per frame (m) 

1 Original condition 1242×375 119.7 0.5 

2 

FOV  
experiment 

966×375 106.5 0.5 

3 828×375 97.9 0.5 

4 690×375 87.4 0.5 

5 414×375 59.7 0.5 

6 Distance per frame 
experiment 

1242×375 119.7 1.0 

7 1242×375 119.7 1.5 

 
3.1 Estimation Result According to FOV 
 
For the FOV experiment, we set the FOV cases from 59.7 to 119.7 degrees by clipping the images. As in Table 3, 
PSVO showed the best performance at case 2 and the worst performance at case 1. While the processing time was 
shortened by FOV reduction, the accuracy was not significantly different. Figure 6 shows the trajectory estimation 
results at case 1 to 5. In this figure, the black line is truth and the color line is trajectory estimated. The color, which 
means standard deviation of each frame, showed that standard deviation increases as the road switches from straight 
to curved. 
 

Table 3. Performance by FOV case 

Experiment 
case 

FOV 
(degree) 

Translation 
error (%) 

Rotation  
error (deg./m) 

Standard 
deviation 

Processing 
time (sec.) 

1 119.7 1.7274 0.0203 0.3155 0.1336 

2 106.5 1.9947 0.0083 0.2886 0.1342 

3 97.9 2.6548 0.0110 0.2997 0.1170 

4 87.4 2.6754 0.0076 0.2942 0.1038 

5 59.7 1.6721 0.0124 0.2944 0.0670 

Average 2.1449 0.0119 0.2985 0.1111 
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(a) (b) 

 

 
(c) (d) 

 

 
(e) 

Figure 6. Estimated trajectory at Case 1 to 5: (a) to (e) 
 
3.2 Estimation Result According to distance per frame 
 

 
(a) 

 

 
(b) 

Figure 7. (a) Feature matching result on straight road; (b) Feature matching result on curved road 
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For this experiment, we set the distance per frame from 0.5 to 1.5 meters by loading the images at regular intervals. 
When the distance per frame became longer, the number of outliers increased. This problem was found in curved 
rather than straight road as Figure 7. The experiment showed that the performance was sensitive to the distance as 
in Table 4. In particular, the translation error increased rapidly as the distance became longer.  
 

Table 4. Performance by distance per frame 

Experiment 
case 

Distance  
per frame (m) 

Translation 
error (%) 

Rotation  
error (deg./m) 

Standard 
deviation 

Processing 
time (sec.) 

1 0.5 1.7274 0.0203 0.3155 0.1336 

6 1.0 24.5303 0.0991 2.4831 0.3550 

7 1.5 48.3810 0.1319 8.1412 1.1118 

Average 24.8795 0.0838 3.6466 0.5335 

 
4. DISCUSSION 
 

 
Figure 8. Error ellipse for feature matched and projected 

 
In this study, we used the Inha dataset and sequence 03 of KITTI dataset. We tested PSVO developed according to 
imaging geometry by 7 cases and described the error per mileage. The experiment results showed that VO accuracy 
is more sensitive to the distance per frame than FOV. 
The error ellipses for feature are as shown in Figure 8. When the feature is derived from previous to current image 
space, its error ellipse changes depending on the baseline and the distance per frame. To define two geometry factors, 
we calculated convergence angle between 𝐿௧ିଶ 𝐿௧ିଵ  and 𝐿௧ିଵ 𝑅௧ିଶ . The angle is proportional to the baseline and 
inversely proportional to the distance per frame. We found that the error ellipse is inversely proportional to the 
convergence angle.  
Table 5 shows the convergence angle by cases. The error ellipses with Inha dataset are the biggest as the convergence 
angle is significantly small as about 3.4 degrees. This causes a large error propagation from image space to model 
space. Therefore, fitting the features to geometry model, such RANSAC and collinearity condition, becomes 
difficult, why feature filtering did not work properly. 
 

Table 5. Convergence angle between the frames 

Experiment case Convergence angle (degree) 

KITTI dataset 

Case 1 47.0514 

Case 6 28.2425 

Case 7 19.7024 

Inha dataset 3.3521 
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5. CONCLUSIONS 
  
It is important for VO techniques to get rid of the outliers as possible. In this paper, we showed Photogrammetry-
based VO focusing feature optimization. The PSVO developed carries out two main parts: Feature extraction and 
matching, and feature optimization and motion estimation. The PSVO performs the Shi-Thomasi corner-KLT 
tracker method in feature extraction and matching part, and PFO, VFO and SFO in feature optimization. 
For the experiments, we set the 7 experimental cases using the KITTI dataset and Inha dataset with all different 
imaging geometries. We confirmed the PSVO performance checking feature matching result, trajectory estimation 
error, standard deviation, and processing time. In case 2 with FOV 106.5 degrees and distance per frame 0.5m, the 
performance was the best as translation error is about 1.99%, rotation error is about 0.01deg./m, standard deviation 
is about 0.29, and processing time is about 0.13 seconds. On the other hand, in case 7 with FOV 119.7 degrees and 
distance per frame 1.5m, the performance was the worst as translation error is about 48.38%, rotation error is about 
0.13deg./m, standard deviation is about 8.14, and processing time is about 1.11 seconds. The experiment results 
described that VO accuracy is more affected by the distance per frame than the FOV and the translation accuracy is 
more sensitive than the rotation accuracy. 
We analyzed the results using the convergence angle as a quality indicator of imaging geometry. Through the 
analysis, we were able to confirm the PSVO stability at side of various FOV and a correlation between its accuracy 
and imaging geometry. Based on this study, we expected to improve the PSVO in various environments and apply 
to other image-based estimation as the quality indicator proposed. 
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