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ABSTRACT: Understanding topographic change of sandbank is important in order to monitor ecological function 

and sustainability of human life along the seashore area. This paper presents the study on topographic change analysis 

at Beimen sandbank by using multi-temporal UAV (unmanned aerial vehicle) imagery. Due to the Beimen’s coastline 

morphology over large spatial scales (4 km alongshore, i.e., approximately 4 km2 of sand-dune system), we use a 

VTOL (Vertical Take Off and Landing) UAV to acquire high spatial resolution images. In order to reveal the 

sandbank topographical changes, we used five time series data acquired between February and July of year 2019 and 

propose a novel strategy to co-register multi-temporal datasets. After dense image matching, we found corrupted 

pointclouds with significant amount of noise and outlier in the water surface due to image matching failed. To 

overcome it, we apply Random Forest-Machine Learning (RFML) for removing these outliers in unordered 

pointclouds. This approach is efficient and robust to remove amounts of noise and outliers, especially in the water 

surface with sun reflection and wave, while being able to handle large and dense sampled pointclouds. According to 

its result, we generate DSM from the refined pointclouds and analyze the erosion and accumulation effects at 

Beimen’s sandbank area. Finally, we calculate the erosion and accumulation volume and identify the area affected 

by erosion and accumulation. We noticed that the highest accumulation area occurs between May 19th and July 4th, 

with an estimated accumulation area of 1,111,282.20 m2 and accumulation volume of 224,549.60 m3 due to the 

heaviest rainfall occurred at July 2nd and 3rd. Furthermore, we obtained a total of erosion area with 934,497.60 m2 

between July 4th and July 17th. 

1. INTRODUCTION

Beimen sandbank is located at the western of Jing Zai Jjiao Salt Field, Beimen District, Taiwan. As shown in Figure

1, it has 4.2 km length along the west coast and has important function for sustainable human life at the seashore area.

Sandbank surface, therefore, is very complex and the topological changes are dynamic due to natural coastal factors,

i.e. ocean wave, tidal forces, wind, rainfall and typhoons. In addition, the spatial change of sandbank surface is

important to monitor ecological function at the sandbank area. To accomplish it, we use multi-temporal UAV imagery

to monitor its land cover and topographical changes. To figure out the spatial change of the sandbank, five time series

data were acquired, i.e. Feb 23rd, April 20th, May 19th, July 4th and July 17th by using a VTOL type UAV, named

Saber A.

Figure 1. Beimen sandbank at western Taiwan seashore. 

Photogrammetric techniques had been successfully applied to detect and monitor large-scale coastal dune change of 

Truc Vert beach which was representative open sandy beaches of the 110km long Gironde coast in France (Fauret, 

et al., 2019). In addition, UAV platform had successfully performed and represented a promising technique for high 

resolution reconstruction of topography on coastal environments at Ravenna, Italy (Mancini, et al., 2013). 

Furthermore, UAV had already been successfully exploited to monitor the topography of dynamic tidal inlet (Long, 

et al., 2016) and calculate sand volume (Yoo & Oh, 2016) on the south-east coast of Korea.   

The important issue while we use multi-temporal UAV datasets in sand area is co-registration among those data since 

there is no ground control points (GCP) on the sandbank area. Moreover, because the sea shore contains large area 

of waterbody, not only ocean but also fish ponds, corrupted pointclouds will appear with significant of noise and 
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outlier in the water surface due to image matching failed. This research mainly focus on two topics. Firstly, we 

propose a strategy to co-register multi-temporal UAV images with no GCP at the sandbank area. The second one is 

to analyse sandbank surface change and identify the erosion and accumulation area affected by heavy rainfall. 

 

2. DATA AND METHODS 

2.1 UAV & images data collection 

In this study we collect data in two regions, i.e., sandbank and inland area (Figure 2). Since we are not able to acquire 

the GPS field measurement of GCPs at the sandbank area (red region), but we can survey GCPs at the inland area 

(green region), we need to conduct several UAV flights at the inland area and process it together with the one at the 

sandbank area. There are 3 flight strips which contain 6 flight lines at the inland area, i.e., B1, B2, B3 and we named 

it as “base frame”. We also use “base frame” UAV images to conduct on-the-job self-calibration. Meanwhile, in the 

sandbank area we only acquire only one strip, which contains 2 flight lines, and we carry out five epochs in 2019, i.e. 

T1 (Feb 23rd), T2 (April 20th), T3 (May 19th), T4 (July 4th), and T5 (July 17th).  

 

  

Figure 2. Two area of UAV’s data collection and image database 

 

To acquire the aerial images, we use a Saber A-VTOL UAV as shown in Figure 3. The advantage of VTOL UAV is 

that it can take off and landing vertically, like a multi-rotary UAV, but acquire imagery like a fixed-wing UAV. Using 

the 6 cells 25000 mAh battery, it is capable to fly 80km of traveling distance which is suitable for large area or 

corridor mapping, like the sandbank area. This UAV carries Sony A7r2 with 15mm focal length lens. With a flying 

altitude of 400m, it can produce high resolution orthoimage with a GSD (Ground Sampling Distance) of 12cm and 

build DSM (Digital Surface Model) in 0.5m GSD. 

 

 
Figure 3. UAV Saber A-VTOL 

2.2 The proposed strategy 

There are two issues regarding to surface change analysis at the sandbank area by using multi-temporal UAV image. 

The first one is the way to co-register all datasets, i.e. pointclouds, DSM, ortho-image, accurately, particularly at the 

sandbank area where has no GCPs. All of GCPs are located at the inland area, as shown in Figure 4, so that we need 

to co-register the time series of sandbank images with inland images. To cope with this problem, we simulate two co-

registration strategies during aerial triangulation of images (Rau, et al., 2019). The first one is “independent method”, 

meaning that we fix the EOPs of the “base frame” images when conduct aerial triangulation with each epoch’s UAV 

images, i.e. no tie-point among the all epochs of images. The second one is the “combined method” by combining 

the “base frame” images with all epochs’ UAV images (Figure 5) during aerial triangulation. In which, the “base 
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frame” images should be calibrated in advance by a rigorous aerial triangulation (AT) procedure. The EOPs of “base 

frame” images are fixed while performing AT with sandbank images. By using this configuration, the camera’s 

position and orientation of Base Frame images will not move or changed, thus it will force the time series images 

(T1-T6) connected to the “base frame” tightly and co-register the produced pointclouds accurately. 

 

  
Figure 4. GCPs (blue flags) distribution.  

(a) Beimen seashore area, (b) The whole Tainan seashore. 

Figure 5. Two strategy of co-registration  

(AT) process. (a) independent AT, (b) combined 

AT 

 

The second issue is noisy pointclouds in the waterbody due to image matching failure. To cope with this issue, we 

adopt Random Forest Machine Learning (RFML) method provided by Lidar 360 software to extract the noisy points 

and remove them automatically. The method could handle unstructured and inhomogeneous pointclouds with strong 

variations in point density (Hackel, et al., 2016).  

 

2.3 Methodology of analyses surface change 

To calculate the difference between two datasets, we apply cloud to cloud comparison (C2C) algorithm provided by 

Cloud Compare software to compute the discrepancy between two time-series pointclouds. The cloud-to-cloud 

distance apparently indicates the surface change of sandbank between two time series datasets. Based on pointclouds 

data, we generate DSM and analyze the erosion effect occurred at Beimen’s sandbank at the common zone. The 

common zone is defined by intersection of 0m elevation contour lines on five epoch time as shown in Figure 6.   

 
Figure 6. Common area at the sandbank area, defined by intersection of 0m contour line from all time-series data 
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We also analyse the surface changes by comparing the DSM and surface profiles to identify the erosion and 

accumulation area.  Furthermore, we calculate the erosion and accumulation volume of sandbank at the common zone 

and use 0 m elevation as reference (Figure 7).  

 
Figure 7. Surface change analysis between time-series T1 and T2.  

 

3. RESULTS AND DISCUSSION 

3.1 UAV image triangulation accuracy analysis 

In this study, we observe 30km long and 1km width seashore along Taiwan western coast as shown in Figure 4(b). 

In total, there are 96 control/check points surveyed by eGNSS method. We conduct AT using Agisoft Metashape 

software. During AT bundle adjustment, some of them are marked as GCPs and the others are treated as ICPs 

(independent check points). The algorithms detect and match the feature points in different camera perspectives by 

using Scale Invariant Feature Transform (SIFT) algorithms (Carrivick, et al., 2016). Then, it reconstruct 3D scene 

structure through SfM(Structure from Motion) technique as well as solving the interior and exterior orientation 

parameters (IOPs/EOPs) of the camera and images. For rigorous and accurate AT purpose, we apply gradual filtering 

by removing tie-points that were matched from a minimum number of images together with a small reprojection error. 

The statistics of AT accuracy analysis results are shown in Table 1. The RMS of GCP and ICP for all cases are smaller 

than 20 cm and the overall reprojection error is roughly around 1 pixel. This proves that both strategies are accurate, 

reliable and stable.  

 

Table 1. Statistics of AT accuracy 

 
 

3.2. Co-registration of multi-temporal datasets 

Both co-registration strategies show that the AT results are accurate. However, in order to prove that all time series 

images have been well co-registered, we should check the surface profiles of all epochs at non-changed objects, e.g. 

building and road. Furthermore, we also check the number of valid tie-point matched between neighborhood images. 

The higher the valid tie-point is, the better the co-registration results. Figure 8 shows the surface profile comparison 

of both strategies. According to this figure, we notice that co-registration using “independent” strategy has high 

elevation difference and inconsistence profiles among all five time series datasets. Moreover, it has fewer number of 

valid tie-point compared with the “combined” strategy. Two tie-point matching examples are shown in Figure 9, in 

which the blue lines denote valid matching, while the red lines denote invalid one between neighborhood images. 

Although the number of valid tie-point matching does not increase considerably, it still improves the consistency of 

surface profiles significantly in the whole time series data. Base on this comparison, we notice that “combined” 

strategy is better to co-register multi-temporal datasets than the “independent” one. 
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(a) “Independent AT” strategy                                               (b) “Combined AT” strategy 

 
Figure 8. Surface profiles comparisons, in which different colors denote different epochs.  

 

  
(a) “Independent AT” strategy (b) “Combined AT” strategy 

  

Figure 9. Tie-points matching results between neighbored images.    

 

3.3. Noise removal on water surface 

After performing AT process, we generate 3D dense pointcloud using Multi View Stereo (MVS) dense image 

matching algorithm, and then produce DSM and orthophoto of sandbank area. Due to image matching failure on the 

water surface area, it contains a huge noise and outlier pointclouds as shown in Figure 10(a) and 10(c). To overcome 

it, we apply RFML algorithm to remove the outliers. Random Forests are the combination of tree predictors such that 

each tree depends on the values of a random vector sampled in-dependently and with the same distribution for all  

trees in the forest (Breiman, 2001). It provides an accurate classification and run on large datasets efficiently, also 

measures the variable importance for each class. The feature selection is obtained by backward elimination of features 

depending on their importance (Chehata, et al., 2009).  

 

There are 3 main steps while use RFML to remove noisy pointclouds, i.e. create and define the training data, generate 

trained model and classifying the data (Green-Valley, 2018). The machine learning classification use the trained 

model for determining individual point classifications based on a statistical model of user-defined feature types. They 

have a good predictive performance even when most predictive variables are noisy. In this study, Random Forests 

were successfully applied to classify unstructured and inhomogeneous pointclouds derived from photogrammetric 

reconstruction, especially in the water surface with sun reflection and wave.  After the model has trained, a large 

amount of data is processed in batch, and it is therefore reduce the amount of labor significantly. We classify and 

separate the pointclouds into four classes, i.e. noisy, ground surface, vegetation and buildings. For producing refined 

pointclouds, we merge all pointclouds classes but exclude noisy points.  Figure 10(d) shows the refined pointclouds 

after RFML noise removal and Figure 10(b) shows the DSM generated from the refined pointclouds. 
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Figure 10. Before and after noisy removal by using RFML algorithm 

 

3.4. Pointclouds and surface change analysis 

Through photogrammetric and machine learning processes we have obtained refined 3D pointclouds at the sandbank 

area for all five epochs. For topographic change analysis, we eliminate the pointclouds below an elevation reference, 

i.e. 0m. Figure 11 shows the remaining pointclouds above 0m elevation.  

 
Figure 11. Pointclouds above 0m elevation reference 

 

We also calculate the distance on consecutive time series data to understand their surface changes at the common 

area. Figure 12 shows the pseudo coloured images according to the scalar field on C2C algorithms and the surface 

profile based on the DSM data. The red color indicates maximum distance value, whereas the blue one has the lowest 

distance. Since C2C shows in absolute distance, we use cross section profile in order to identify the height difference 

and quantify the changes of elevation between two surfaces. Based on cloud distance we found a significant change 

occurs between February 23rd (T1) and April 20th (T2) as indicates in red color. From the surface profile, in the line 

p-q, we observe that the elevation difference around 0.8m as shown in Figure 12a. Furthermore, we found that the 

highest accumulation change occurs between May 19th and July 4th with elevation difference around 0.4m, as shown 

in line profile t-u (Figure 12c). We also found the highest erosion change occurs between July 4th and July 17th with 

elevation difference around 0.3m, as shown in line profile v-w (Figure 12d). 
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Figure 12. Pseudo coloured images according to the scalar field and the surface profile between each time-series 

data.  

 

3.5. Erosion and accumulation area of sandbank 

We also calculate erosion and accumulation area within the common zone on consecutive time series data. The 

erosion area occurs when waves and currents remove sand from the beach. The loss of sand causes the beach to be 

narrower and lower in elevation (USGS, 2016). Figure 13 shows the erosion as indicated in red color, whereas the 

accumulation area is indicated in blue color. The highest accumulation area occurs between May 19th and July 4th, 

indicated by the dominance of blue color covering in almost surfaces of the sandbank, with an estimated accumulation 

area of 1,111,282.2 m2. Meanwhile, the highest erosion area occurs between July 4th and July 17th with an estimated 

erosion area of 934,497.6 m2. It happens due to the lowest precipitation in Beimen area at July 12nd until 16th, i.e. 

3.16 mm (CWB, 2019) The erosion and accumulation area on consecutive time series data are illustrated in Table 2.  
 

Table 2. Erosion and accumulation area 
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Figure 13. The erosion and accumulation area.  

 

3.6. Erosion and accumulation volume 

To demonstrate the sandbank volume change, we generate DSM elevation difference on consecutive time series data. 

It further provides quantitative information of change in elevation and the erosion or accumulation volume at the 

sandbank as shown in Figure 14. The green-red color indicates sand erosion and blue-yellow color indicates sand 

accumulation. By understanding this result, we notice that the significant change occurs between May 19th (T3) and 

July 17th (T4) as shown in Figure 14, corresponding to the results of the accumulation volume as illustrated on Table 

3, i.e. 224,549.60 m3. It happens due to the largest precipitation in Beimen area at July 2nd until 3rd, i.e., 113.5 mm 

(CWB, 2019). Heavy rainfall really affects landscape changes and surface elevation around the sandbank area. This 

phenomenon will retreat the sand back to the ocean and accumulation to the inland area. 

 
Table 3. Volume calculation between each time series data 

 

 
Figure 14. DSM elevation difference between each dataset 
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4. CONCLUSIONS 

In this study, we adopt UAV photogrammetry and spatial analysis to monitor topographic changes in the 

sandbank area. UAV have attracted a lot of attention in the field of remote sensing, since they present advantages 

of ubiquitous usability, flexible deployment, high maneuverability, multi-sensory, and provide a cost-effective 

service with acceptable accuracy. To monitor topographic sandbank changes, we conduct multi-temporal image 

acquisition during the lowest tidal time, which is more flexible by utilizing UAV as platform. However, since 

west Taiwan’s sand-dune morphology over large spatial scales, i.e. 30 km alongshore corridor area and with no 

control point at the sandbank surface, it causes a weak imaging geometry. The other problem is the way to co-

register the entire time series datasets. To accomplish it, we propose two strategies to co-register multi-temporal 

UAV images in the sandbank area, i.e. “independent” and “combined” aerial triangulation strategies. According 

to the AT accuracy results, we have observed 0.987 pixel of reprojection error and less than 20cm of GCP/ICP 

RMS error. However, from the DSM elevation differences and the number of valid tie-point matching, we have 

proven that the “combined AT“ strategy for co-registration is more accurate and consistent for five time series 

datasets.  

Through photogrammetric and machine learning processing, we have obtained a refined 3D pointclouds at 

the sandbank area and calculate their distance on consecutive time series datasets to better understand the surface 

changes. We also calculate erosion and accumulation area in the common area through 0m contour lines. The 

highest accumulation area occurs between May 19th and July 4th had an accumulation area of 1,111,282.20 m2 

and accumulation volume of 224,549.60 m3. For erosion area, we have obtained the highest erosion area occurs 

between July 4th and July 17th with erosion area of 934,497.60 m2.  

Base on the results, we concluded that photogrammetric pointclouds and DSM generated from UAV imagery 

can perform periodical surface change monitoring. Moreover, we can measure not only their erosion and 

accumulation area but also volumetric changes. It is useful to monitor its dynamic changes for the purpose to 

maintain the functionality of the sandbank. 
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