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ABSTRACT:  Pests and diseases contributed to declining productivity in rice production. 
Monitoring the plant health and early detection of the disease are essential to facilitate effective 
management practices, decrease disease spread, and minimize yield loss. Remote sensing ( RS) 
techniques such as use of hyperspectral data can provide timely information on spatial variability 
of pest and disease damage over a large area. Hyperspectral data is composed of contiguous 
spectral bands which allows improved analysis of specific comp ounds, molecular interactions, 
crop stress, and biophysical or biochemical characteristics related to plant status.  
This study aimed to use hyperspectral data to detect and differentiate the three -major diseases in 
the Philippines. Reflectance spectra of r ice leaves infected with the three pathogens rice tungro 
virus, Xanthomonas oryzae pv. oryzae  and Magnaporthe oryzae  causing rice tungro disease, 
bacterial leaf blight (BLB), and blast, respectively, were recorded repeatedly from the inoculation 
to the late stages of the diseases. Hyperspectral data were analyzed using different data analysis 
such as ANOVA, cluster analysis and spectral features. The IRRI Standard Evaluation System 
(SES) for rice were used for visual assessment to determine the degree of se verity and incidence 
of the disease. 
Based on the results, spectral reflectance of rice was affected by each disease in a characteristic 
way resulting to different spectral signature. Reflectance differences, sensitivity, and first order 
derivatives differed depending on the disease and the developmental stage of the diseases. Red 
and red-edge ranges are the most sensitive to the three diseases. Moreover, near -infrared 
wavelengths decreased as the disease progress. In addition, yellow -orange range (550 –  620 nm) 
is very sensitive during the early stage of tungro. The results of cluster analysis showed that 
Tungro can be detected in 10% or less height reduction and no distinct yellow to yellow orange 
leaf discoloration while BLB can be detec ted when affected area is 5% or less. On the other hand, 
blast was detected in its late stage, more than 75% of leaf area are affected. This study illustrates 
the potential use of hyperspectral data in detecting tungro disease, bacterial leaf blight (BLB),  
and blast in rice . 

 

1. INTRODUCTION 

 

Rice provides the main source of energy for Filipinos where an average family requires 37% of rice and its products 

daily (Ponce and Inocencio, 2017).  In 2017, Philippine Statistics Authority reports that the average yield of palay 

is 4.00 tons/ha, 4.41 tons/ha in irrigated and 3.11 in rainfed rice areas (PSA, 2018). Department of Agriculture (DA) 

said that the country reached 96% rice self-sufficiency, however, it is still not enough to sustain the need of all 

Filipinos.   

Damage caused by pests and diseases plays a significant role in crop losses throughout the world. The losses in crop 

yield due to pathogen infections, animals and weeds range between 20% and 40% (Savary, et al, 2012) of 

agricultural production, yield loss for rice range at 30% globally (Savary et al., 2019). To minimize these losses on 

agricultural production, monitoring and early detection of pests and diseases are necessary to decrease disease 

spread and facilitate effective management practices.  

Information about the incidence and severity of the disease is particularly important for rapid management 

decisions, especially disease occurrence is closely related to yield loss. Traditionally, pest and disease assessment 

is done by visual method i.e. observing symptoms and rating the incidence. Recent detection and identification of 

diseases and disease causal organism can be done through direct and indirect methods. Direct detection includes 

molecular and serological methods that can be used for high-throughput analysis when large numbers of samples 

need to be analyzed. The disease-causing pathogens (i.e. bacteria, fungi, and viruses) are directly detected in these 

methods to provide accurate identification of the disease and pathogen. In contrast, indirect methods identify the 

plant diseases through various parameters such as morphological change, temperature change, transpiration rate 

change and volatile organic compounds released by infected plants (Fang and Ramasamy, 2015). However, direct 
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traditional and innovative methods to detect and identify plant diseases are laborious and very costly. 

Remote sensing (RS) techniques, as an indirect method, are based on the assumption that the stress affects the 

physical structure and photosynthesis of the plants thus influencing the absorption of light energy. In addition, RS 

can give a synoptic view of the area in a non-destructive and noninvasive way that could effectively provide timely 

information on spatial variability of pest damage (Prabkahar, et al, 2011). Measurements in remote sensing can be 

acquired by portable instruments such as handheld spectroradiometers. These measurements are processed and 

analyzed to retrieve information on the object observed. The optical sensors provide detailed information based on 

different electromagnetic spectra and thus, enable prediction of the plant health (Martinelli, et al, 2013). 

Several studies have been conducted to assess the use of hyperspectral data in detection of various diseases in rice 

such as panicle blast, bacterial leaf blight (blb), brown spot and injuries from brown planthopper (BPH) in a certain 

rice stage (Kobayashi, et al, 2001, Kobayashi, et al, 2015, Prasannakumar, et al, 2014). These pests and diseases 

exhibit different symptoms, levels of incidence and yield reduction in rice. Kobayashi et. al, evaluated the use of 

airborne hyperspectral imagery to measure the severity of panicle blast in field crops. Based on the results, at the 

dough stage, there are two band ratios that exhibited significant correlations with disease incidence (R498 to 

515/R700 to 717 and R472 to 489/R558 to 575) (Kobayashi, et al, 2015). In addition, four correlations sensitive 

wavelengths at 764, 961, 1201 and 1664 can be depicted the relation of between BPH stress on the rice crop and 

plant reflectance (Prasannakumar, et al, 2014). Different statistical methods were used to estimate and define the 

severity of rice brown spot at the leaf level. Results revealed that multiple stepwise linear regressions and partial 

least-square regression could efficiently estimate disease severity.  Moreover, based on the results of Singh et. al, 

2012 in the use of hyperspectral data, notable differences in healthy and blb infected rice plants were noticed in 

770–860 nm and 920–1050 nm. The hyperspectral data were collected in the different disease incidence at 75 days 

after sowing (Singh, et al, 2012). 

Hyperspectral data have been successfully used to distinguish between healthy and diseased plant. Since the disease 

symptoms can be seen in the leaves, there is a possibility that it can be detected using remote sensing. This is 

possible because healthy and diseased plants reflect energy differently. The common rice pests and diseases that 

cause extensive damage and losses in rice-producing areas in the Philippines are brown planthopper (BPH), 

bacterial leaf blight, rice blast, sheath blight, and rice tungro. As such, eighteen provinces in the country were 

affected by BPH in 2017 and nine provinces in 2015 (Fernandez R., 2017). In September 2016, Western Visayas 

reported the occurrence of rice blast and sheath blight affecting over 3,000 ha of rice lands in the region (Herriman 

R., 2016). Hence, this study will use hyperspectral data to detect and differentiate the three major rice diseases in 

the Philippines - blast, bacterial leaf blight (BLB), rice tungro disease that are caused by different pathogens, fungi, 

bacteria, and virus, respectively. Specific objectives were to (1) Understand the difference of spectral responses 

among the three-major pest and diseases and identify the spectral regions in which rice reflectance was affected by 

these pests and disease; and (2) Identify efficient spectral features for differentiating the three stressors. 

 

2. METHODOLOGY 

 

2.1 Establishment of the study 

 

The experiment was established in PhilRice Central Experiment Station in Muñoz, Nueva Ecija screenhouse and 

experimental field. Both blast and tungro set-up were planted inside the screenhouse to prevent the spreading of the 

disease in the experiment area. While, Bacterial Leaf Blight (BLB) was established in the experimental area. 

Susceptible and resistant varieties were inoculated using the National Cooperative Testing (NCT) protocols for 

disease inoculation. Glh introduction, clipping method and spreader rows techniques were used for inculation of 

tungro, blb and blast, respectively. Inoculated and uninoculated plants were planted in plots with three replications. 

Uninoculated plants served as the control for each disease. Plants were inoculated during the most critical stage of 

rice plant for the disease infection. Blast and tungro were inoculated at seedling while blb at maximum tillering. 

 

2.2 Data acquisition 

 

2.2.1 Spectral Measurements 

 

Spectral responses were measured using Ocean Optics USB4000-VIS-NIR-ES spectrometer in leaf level. Ocean 

Optics USB4000-VIS-NIR-ES spectrometer is a miniature spectrometer pre-configured for general visible and near-

IR measurements. Five (5) selected plants per plot and replication were selected to measure the spectral responses. 

These sample plants were measured almost daily before and after the introduction of the inoculum to the plants 

until the diseases were reach International Rice Research Institute Standard Evaluation System for Rice (IRRI SES) 
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score of 9 (Table 1). 

 

2.2.2 Agronomic parameters and weather data 

 

Agronomic parameters such as LAI and plant height were measured every week. LAI was measured using 

AccuPAR LP-80 ceptometer, in 3 replicates within each plot with at least 2 plants away from each other and bunds. 

Meanwhile, plant height was measured once a week in 5 sampling plants per plot. To detect the disease infection 

in the rice plants, visual symptoms of the 3 diseases were assessed using SES. SES uses scale that divides total 

range of possible phenotypic expressions in rice to have a common standard for evaluation. Table 1 shows the 

different SES scale for determining the incidence or severity of 3 selected rice diseases. 

 

Table 1. IRRI Standard Evaluation System scale for tungro, BLB and blast disease 

Scale Tungro BLB (field) Blast (nursery) 

0   No lesions observed 

1 No symptom observed 1-5% Small brown specks of pin-point size or 

larger brown specks without sporulating 

center 

3 1-10% height reduction, no distinct yellow 

to yellow orange leaf discoloration 

6-12% Lesion type is the same as in scale 2, but a 

significant number of lesions are on the 

upper leaves  

5 11-30% height reduction, no distinct 

yellow to yellow orange leaf discoloration 

13-25% Typical blast lesions infecting 4-10% of the 

leaf area 

7 31-50% height reduction, with distinct 

yellow to yellow orange leaf discoloration  

26-50% Typical blast lesions infection 26-50% of 

the leaf area 

9 More than 50% height reduction, with 

distinct yellow to yellow orange 

discoloration 

51-100% More than 75% leaf area affected 

 

2.3 Data analysis 

 

2.3.1 Data preparation 

All the saved text file containing the nominal radiance and irradiance were copied in Microsoft Excel. Average 

readings for each white reference panel and each target object were computed.  Reflectance of each target objects 

was computed using the formula below.  

 

(Equation 1) 

𝑅𝑒𝑓(𝜆) =  
𝐸(𝜆)𝑠𝑎𝑚𝑝𝑙𝑒 − 𝐸(𝜆)𝑑𝑎𝑟𝑘

𝐸(𝜆)𝑤ℎ𝑖𝑡𝑒 − 𝐸(𝜆)𝑑𝑎𝑟𝑘

 

 

Where 𝐸(𝜆)𝑠𝑎𝑚𝑝𝑙𝑒 is the nominal radiance and 𝐸(𝜆)𝑤ℎ𝑖𝑡𝑒   is irradiance measured by the white panel and 

𝐸(𝜆)𝑑𝑎𝑟𝑘 by the dark object. 

The spectral data was smoothen using Savitzky–Golay smoothing method. It is a digital filter that can be applied to 

a set of digital data points for the purpose of smoothing the data, that is, to increase the signal-to-noise ratio without 

greatly distorting the signal. 5 weighting coefficients was used as a parameter.  The wavelengths from 400 nm to 

850 nm were used in generating the spectral library. Wavelengths from 345 – 400 and >850 nm were omitted since 

the noise was high. 

As the leaf spectra of RTV, blast and BLB were collected from different cultivars, a spectral normalization was 

implemented at first to adjust the spectral data from different groups to an identical baseline. This procedure 

facilitates spectral comparison between different stressors (Zhang et al., 2012). The benefit of such a normalization 

is the suppression of illumination differences. The formula used is as follows: 

 

(Equation 2) 

𝑅𝑒𝑓(𝜆)𝑛𝑜𝑟𝑚 =  
𝑅𝑒𝑓(𝜆)𝑖

1
𝑛

(∑ 𝑅𝑒𝑓(𝜆)𝑖)
𝑛
𝑖=1
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Where, 𝑅(𝜆)𝑛𝑜𝑟𝑚 is the normalized reflectance for band i; 𝑅(𝜆)𝑖 is the original reflectance of the band; n is the total 

effective number of bands. 

 

2.3.2 Ratio Spectra (Sensitivity) 

 

Ratio spectra (sensitivity) are ways to enhance differences between spectral signatures and determine sensitive and 

significant wavelengths for a disease (Yuan et al., 2014). The ratio curve reflects both change direction (increase or 

decrease) and change magnitude of reflectance, it can be treated as a spectral signature of a specific stressor. The 

formulas were as follows: 

 

 (Equation 3) 

𝑅𝑎𝑡𝑖𝑜(𝑠𝑡𝑟𝑒𝑠𝑠) =  
𝑅𝑒𝑓(𝑢𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦)

𝑅𝑒𝑓(ℎ𝑒𝑎𝑙𝑡ℎ𝑦)

 

 

Where, 𝑅𝑒𝑓(𝑢𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦)is the average reflectance of the stressed samples; 𝑅𝑒𝑓(ℎ𝑒𝑎𝑙𝑡ℎ𝑦) is the average reflectance of 

corresponding healthy samples. 

 

2.3.3 Spectral library and Cluster analysis 

 

Using ENVI 4.7 spectral library builder, all the spectral measurements were databased in different spectral libraries. 

The spectral libraries were resampled to SentinelA. Sentinel 2 is a European wide-swath, high-resolution, multi-

spectral imaging mission. (https://sentinel.esa.int/). Resampling is used to either the response of a known instrument 

the wavelengths of a specific image input file. Cluster analysis is an unsupervised classification technique to group 

similar observations into a number of clusters based on the observed values of several variables for each individual. 

Hierarchal clustering is tree-based representation of the observations which is called a dendrogram. The study used 

agglomerative method or Agglomerative Nesting (AGNES), which works in a bottom-up manner (Hartigan, J. A., 

2015). The two ’closest’ (most similar) clusters are then combined and this is done repeatedly until all subjects are 

in one cluster. The analysis was performed to determine the possible earliest date to detect the 3 diseases by grouping 

the dates with similar spectral values. The values used for the analysis were from the resampled reflectance from 

Sentinel 2. 

 

2.3.4 Statistical analysis 

 

Using the different spectral ranges as group, statistical analyses were performed using the IBM SPSS. Data from 

repeated measures was analyzed using a general linear model and the Bonferroni correction to determine statistically 

significant differences (p = 0.01; p = 0.05). Bonferroni test is a multiple-comparison post-hoc correction used in 

performing many independent or dependent statistical tests at the same time (Weisstein, Eric). Data were analyzed 

by analysis of variance (ANOVA). 

 

3. RESULTS AND DISCUSSION 

 

3.1 Disease progress in leaf 

 

Tungro, BLB and blast have different causal pathogens, virus, bacteria and fungi, respectively. Depending on the 

pathogens, the 3 diseases of rice were characterized by disease-specific symptoms. Inoculated plants were first 

colonized without symptoms, after a latent period typical symptom appeared. Figure 1 shows the infected leaves 

with a 9-score scale of 3 different diseases. 

 

 
Figure 1. Infected leaves of (a) tungro, (b) BLB, and (c) blast 
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Spectral measurements were done daily except for days that were too cloudy and rainy. As shown in Table 3, 11 

dates were selected and used in the analysis of the study. The dates were chosen based on its corresponding SES 

scale and appearance of the visual symptoms in the leaves of the plants. 

 

Table 3. Different dates of spectral measurement of the 3 diseases with corresponding SES scale score. 

Date 

Tungro BLB Blast 

Date 
SES 

Scale 
DAI Date 

SES 

Scale 
DAI Date 

SES 

Scale 
DAI 

1 01/18/2018 1 9 03/16/2018 0 0 03/25/2018 0 4 

2 01/24/2018 1 15 03/22/2018 0 0 03/28/2018 1 7 

3 01/25/2018 1 16 03/27/2018 1 4 03/29/2018 1 8 

4 01/28/2018 1 19 03/28/2018 1 5 03/30/2018 1 9 

5 01/31/2018 3 22 03/29/2018 3 6 04/03/2018 3 13 

6 02/01/2018 5 23 03/30/2018 5 7 04/05/2018 5 15 

7 02/03/2018 5 25 04/03/2018 5 11 04/06/2018 5 16 

8 02/04/2018 5 26 04/04/2018 7 12 04/12/2018 7 22 

9 02/09/2018 7 31 04/05/2018 7 13 04/18/2018 7 28 

10 02/14/2018 9 36 04/06/2018 7 14 04/25/2018 9 35 

11 02/16/2018 9 38 04/12/2018 9 20 04/27/2018 9 37 

*Days after inoculation (DAI) 

 

3.2 Spectral reflectance  

 

3.2.1 Leaf reflectance  

 

Tungro  

 

Rice tungro virus disease main symptoms are stunting and yellow to orange discoloration of the leaves (Azzam and 

Chancellor, 2002). With these, changes can be seen in the spectral signatures of leaves infected by tungro. The first 

visible symptom was seen in 22 DAI (Date 5). Figure 2 shows the differences among the test varieties in response 

to tungro infection. As the disease progress, reflectance between 400 to 500 nm and 600 to 700 nm of the susceptible 

variety increased compared to the other varieties. In contrast, NIR region (700 – 850 nm) reflectance decreased. 

The slope at the red edge position between visible and NIR became less steep and shifted to the left.Based on -the 

results of ANOVA, all spectral reflectance of susceptible variety was significantly different from the other varieties 

except in the blue range (Figure 3a). All the test varieties in green range (520-580 nm) were in decreasing trend as 

the rice plant grows and the infection progress. However, the susceptible variety had higher reflectance values 

compared to the other varieties. It was observed that both red and red-edge range reflectance of the susceptible 

variety were increasing as the disease progress. This can be attributed to the strong reflectance of pigments in the 

red - red-edge ranges. Pigments such as chlorophyll a & b, and carotenoids decrease as stress introduced to the 

plants (Subbarao et al, 1979). In contrast, NIR reflectance decreased gradually as the disease incidence increased. 

The absorptance in this region is dominated by internal leaf structure. Reflectance, generally high in this regiondue 

to refractive discontinuities between intercellular air spaces and cell walls (Croft and Chen, 2018). However, during 

the disease pathogenesis, these leaf structures were damaged by the disease making the reflectance decrease. 

 

 
Figure 2. Leaf spectral reflectance among different varieties (a) susceptible, (b) resistant, (c) susceptible control, 

(d) resistant control in response to Tungro inoculation 

5



 

 
Figure 3. Reflectance ranges (a) green, (b) red, (c) red-edge, and (d) NIR of entries in response to Tungro. 

 

Bacterial Leaf Blight 

 

Yellow - orange stripes, the early symptoms of the blb, were observed in the clipped tips at 4 DAI. After 20 days 

of inoculation, the scale reached the 9 scale in SES, more than 50% of the leaf area is infected by BLB.  

Spectral measurements for BLB set-up started in early tillering until flowering. As shown in Figure 4, blue range 

(400 – 500nm) reflectance was not affected by the infection. However, there was an increase in 450 – 500 nm when 

the disease reached 51% infection (Date11).  In addition, an increase of reflectance in the wavelength range of 550 

- 680 nm can be seen compared to the other treatments. The difference of NIR reflectance in susceptible variety 

from the first date to the last date is bigger than the other treatments. Figure 5 shows the different response of each 

reflectance range to BLB inoculation. Susceptible variety was significantly different across the dates and among 

the other varieties. Blue, red, and red-edge ranges reflectance of susceptible variety are higher than among the 

control and resistant varieties and increased as the disease progress in the plant. In contrast, NIR reflectance values 

were lower in susceptible variety compared to other varieties especially during the late stages of the disease. Leaf 

tissues are tend to be destroyed by diseases as a result multiple scattering in the leaf is weaker. This lead to lower 

the NIR reflectance in non-healthy leaf than the healthy leaf (Yuam et al, 2014). 

 

 
Figure 4. Leaf spectral reflectance among different varieties (a) susceptible, (b) resistant, (c) susceptible control, 

(d) resistant control in response to BLB inoculation 

 

 
Figure 5. Reflectance ranges (a) blue, (b) red, (c) red-edge, and (d) NIR of different entries in response to blb. 
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Singh et al. (2012) also studied the use of hyperspectral data to detect BLB at the different disease infection. Based 

on the results, there are notable differences between healthy and diseased rice plants in NIR region (770 – 860 nm 

and 920 – 1050 nm). This is similar to the results of this study, NIR region (720 – 850 nm) is sensitive to BLB 

especially in later stages of the disease. However, red - red-edge region (550 - 680 nm) was the most sensitive 

region to BLB infection.   

 

Blast  

 

First symptoms of blast appeared in susceptible variety 7 DAT. Small brown specks of pin-point size or larger 

brown specks were observed in the leaves. The disease progressed to more than 75% leaf area affected in 37 DAT.  

Changes in reflectance spectra were comparatively low for blast compared to tungro and blast (Figure 6). This can 

be due to symptom is initially appeared as pin-point sized brown specks that is scattered to the leaves. The lesions 

will become large elliptical or spindle-shaped with red to brownish or necrotic border that spread in the larger area 

of the leaf. Same reaction was seen in tungro and blb infection that reflectance in 600 – 700nm increased as the 

disease becomes severe. In addition, the reflectance in the NIR region (720 – 850nm) decreased during the late 

stages of the disease. More changes in the spectra were seen in the late stage of blast as the lesions were spread in 

the leaves and started to wilt and die. Similar to tungro and BLB, blast spectral ranges in susceptible variety were 

significantly different across the dates and among the different varieties (Figure 7). It was observed that blue, red 

and red-edge reflectance increased as the disease incidence increased. These ranges are very sensitive to stress since 

the pigments’ absorption bands are mostly located in these ranges. It was also observed that NIR reflectance is 

slowly decreasing as the disease progress.  

 

 
Figure 6. Leaf spectral reflectance among different varieties (a) susceptible, (b) resistant, (c) susceptible control, 

(d) resistant control in response to blast inoculation 

 

 
Figure 7. Reflectance ranges (a) blue, (b) green, (c) red, (d) red-edge, and (e) NIR of different entries in response 

to blb. 
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4.3 First order derivatives 

 

Based on the first order derivatives shown in Figure 8, there are differences between the susceptible variety and 

susceptible control among the three diseases. In Figure 8a and 8c, tungro and blast susceptible variety have a shift 

in the wavelength range 700 – 750 nm. The first order derivative values become lower as the disease progress in the 

red-edge to NIR ranges. The red-edge region covers the wavelength range between red band absorption to the NIR 

shoulder (690–750 nm) which have a sharp increase in reflectance, in healthy plants. It features the transition from 

visible range strong absorption by leaf chlorophyll to the structural dominated reflectance in the NIR. This inflection 

point has been identified sensitive to changes in chlorophyll content (Croft & Chen, 2018). 

In contrary, BLB has a very narrow shift in 680 – 700 nm range. It was observed that the values increased as the 

severity of the disease increased (Figure 8b).  It was also observed that there is a strong absorption band between 

760 – 770 nm in all the varieties. However, it disappeared in blast as the disease severity increased. 

 

 
Figure 8. First order derivative reflectance among the selected rice disease in 400 – 850nm wavelengths 

 

4.4 Cluster analysis 

 

Cluster analysis was performed to determine the earliest date to detect the 3 diseases. As shown in Figure 9, different 

dates were grouped based on their similarities in resampled reflectance to the Sentinel 2. The highlighted clusters 

were dates that the rice infected plants were detected. Results of cluster analysis showed that tungro can be detected 

starting from the date 5, 21 days after the inoculation. The plants showed 1-10% height reduction, no distinct yellow 

to yellow orange leaf discoloration. In contrary, BLB can be detected starting date 4, 5 DAI, which had a SES score 

of 3 or 1-5% disease incidence. It can be seen in Figure 9b as the date 4 to date 11 were clustered compared from 

the other varieties’ dates. However, date 5 can be observed that it is not included in the cluster, this can be explained 

by the low solar radiation during the data collection. Low solar radiation can lower the spectral reflectance as the 

sunlight is the only source of the light for measurement. Detection of blast started during the late stages of the 

disease development, 35 DAI, a SES score of 9 which means more than 75% of leaf area are affected. Late detection 

of blast can be explained by its symptom (Figure 9c). Early infection of blast has small lesions and occupy small 

area in the leaf making it hard to detect during early on-set of the disease (IRRI SES). 

 

 
Figure 9. Hierarchal cluster analysis of resampled spectra to detect earliest date of diseases (a) tungro, (b) BLB, 

and (c) blast. 
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4.5 Difference and Sensitivity 

 

Figure 10 shows the sensitivity of the three diseases susceptible variety. Susceptible variety is very sensitive to 

tungro infection as seen in Figure 2a. Blue range (450 – 550 nm) reflectance is a little unstable but generally it 

decreased as the disease progress. It was observed that yellow – orange range (550 – 620 nm) became sensitive in 

early stages of the disease but decreased in late stages. The sensitivity in this range can be attributed to the symptom 

exhibited by tungro infection, leaves have a distinct yellow to yellow orange color then turns brown as the leaves 

died in late stages. While, there was an increase of reflectance in the red-red edge range (640 – 720 nm). Green and 

red-red edge ranges are sensitive in both BLB (Figure 10b) and blast (Figure 10c) infection but they differ in number 

of sensitive wavelengths. Blast susceptible variety had more sensitive wavelengths than BLB, 600 – 740 nm and 

625 – 725 nm, respectively. The three diseases are sensitive in red-red edge ranges. These ranges have been 

identified sensitive to changes in chlorophyll content of the plant especially the red edge region. Chlorophyll and 

anthocyanin are reflecting strongly in red wavelengths (Croft and Chen, 2018). 

 

 
Figure 10. Sensitivity of susceptible variety in response to selected diseases 

 

4. Conclusion and Recommendation 

 

Reflectance spectra of rice leaves infected with the three pathogens rice tungro virus, Xanthomonas oryzae pv. 

oryzae and Magnaporthe oryzae causing rice tungro disease, bacterial leaf blight (BLB), and blast, respectively, 

were affected by each disease resulting in different spectral signature.  

Based on the results, red and red-edge ranges were the most sensitive to the three diseases. The reflectance is 

increasing in both ranges as the disease incidence and severity increases.  This can be attributed to the strong 

reflectance of pigments in these ranges. Subbarao et al., et al., 1979 stated that the pigments related to photosynthesis 

i.e. chlorophyll a & b, carotenoids and anthocyanin were destroyed during the disease infection. Moreover, red-edge 

marks the transition from strong absorption by leaf chlorophyll in the visible range to structural dominated 

reflectance in the NIR. Diseases infection in plants shifts the position of the red-edge and lower the steepness of the 

red-edge slope.  

In addition, NIR reflectance decreases in all the diseases as the disease progress. The difference of NIR reflectance 

between healthy and unhealthy plants can be seen in later stages of the diseases. According to Croft and Chen in 

2018, since, there are no strong absorption features in the NIR (>700nm). NIR reflectance is controlled by the ratio 

of mesophyll cell surface to intercellular air spaces, due to refractive discontinuities between intercellular air spaces 

and cell walls which is destroyed in later stage of the disease and senescence. 

Reflectance sensitivity and first order derivatives (FOD) showed the differences of each disease. Based on first order 

derivatives values, there were differences between susceptible and susceptible control variety in tungro and blast 

infection. The values became lower as the disease progress in the red-edge to NIR ranges (700 – 750 nm) that caused 

a shift in wavelength range. No changes were observed in the FOD values in blb infected plants. Strong absorption 

bands were observed in the wavelengths between 760 – 770 nm in all the varieties. However, it disappeared in 

tungro and blast as the disease severity increased. 

Reflectance sensitivity showed the changes of the significant wavelengths for the 3 diseases over time. It was 

observed that the yellow-orange range (550 – 620 nm) was very sensitive to tungro during the early stage of the 

disease. The sensitivity in this range can be attributed to the symptom exhibited by tungro infection, leaves have a 

distinct yellow to yellow orange color then turns brown in late stages. All the three diseases were sensitive in red 

and red-edge ranges; however, different number of wavelengths were observed. Tungro was sensitive in 640 – 720 

nm compared to blast and blb that were sensitive in wavelengths 630 – 725 nm and 600 – 740 nm, respectively.  

Cluster analysis was used to detect the earliest stages of the 3 diseases as the dates with similar values were grouped 

together. Based on the results, tungro and blb can effectively detect in the early stages of the diseases. Tungro can 

be detected when the plants were in less than 10% height reduction and no distinct yellow to yellow orange leaf 
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discoloration. In contrast, blb was detected 5 DAI in which area affected was less than 5%. Blast was detected in 

late stages when more than 75% of the leaf area were already affected. The late detection can be accounted that 

blast infection early symptoms were small lesions and occupy small area in the leaf (IRRI SES). 

The study analysis is limited to ANOVA for repeated measures and independent t-test to differentiate the test 

varieties and 3 diseases. Hence, other techniques such as discriminant analysis and similarity index should be 

explored in order to possibly enhance the differentiation of the three diseases. In this study, the 3 diseases were 

detected and monitored by assessing visual symptoms of each disease and no actual detection of the pathogen was 

done. Therefore, to further establish the strong relationship between the remote sensing study and disease 

progression, it is recommended to perform direct analyses such as serological methods. Direct analyses can give the 

exact pathogen affect the plant.  
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