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ABSTRACT: The distribution of paddy fields affects greatly regional budget of methane (CH₄), which is the 
second influential greenhouse gas. Therefore, broad scale paddy field map is fundamentally important for methane 
budget estimation. However, only a few paddy field maps have been developed, because there remain serious 
technical issues making it difficult. For example, rice cultivation period overlaps roughly with rainy and cloudy 
seasons and differs among regions due to complicated factors such as rice cultivar and water management. To 
solve these problems, several methods using Sentinel-1 time series have been proposed, because it is robust against 
cloud-cover conditions. However, these methods that use only Sentinel-1 time series have an issue in accuracy of 
extracting paddy field, because the SAR sensor of Sentinel-1 is less sensitive to vegetation and flooded condition 
than optical sensors with multi-bands. In this study, to compensate for the weakness of Sentinel-1 time series in 
paddy field mapping, we propose a new method assisted by Sentinel-2, which is more reliable and robust for the 
extraction of flooded condition over various land surfaces. Our new method consists of two major steps. In Step 
1, paddy fields were provisionally extracted by the thresholds based on the seasonal variation and the flooded 
condition using the time series of VH-polarized backscatter of Sentinel-1A. In Step 2, among the pixels specified 
to be provisional paddy field in Step 1, those which were classified as ‘non-flooded’ by the LSWI, NDVI and EVI 
calculated using the Sentinel-2 data during a flooded period, were excluded. Finally, we developed a paddy field 
map for East Japan in 2018 with 30m spatial resolution. The results show that our proposed method assisted by 
Sentinel-2 was effective in reducing mis-classifications especially for areas cultivated by other crops. 
 
1. INTRODUCTION 

 

Paddy fields play important roles in various environmental issues including food security, water resource 

management, biodiversity conservation and climate change. Especially in terms of climate change, paddy field is one 

of the major sources of methane (CH₄), which is the second influential greenhouse gas for global warming following 

CO₂. The distribution of paddy fields affects greatly regional methane budget. In Japan, the methane emission from 

paddy fields occupies more than 40% of the total methane budget (Ito, 2019). Therefore, broad scale paddy field 

maps are fundamentally important for improving the accuracy of methane budget estimations. With increasing 

necessity of paddy field maps at national to global scales, many efforts have been made by using satellite remote 

sensing images including optical images and synthetic aperture radar (SAR) images. Before the 2010s, the most of 

studies for broad scale paddy field mapping used limited types of remote sensing images with relatively low to middle 

spatial resolution, such as MODIS (Takeuchi, 2004, Xiao, 2005 and Ozdogan, 2008).  Processing multisource remote 

sensing images at high spatial and temporal resolutions on a broad scale is a major challenge, because it needs large 

computer storage and high operating capacity (Zhang, 2018). Recent years, remote sensing analyses on cloud-based 

platforms such as Google Earth Engine (GEE) have become popular, making it possible to easily use huge amount 

of multisource remote sensing images with higher spatial resolution. However, only a few paddy field maps have 

been developed, because there remain serious technical issues making it difficult. For example, rice cultivation period 

overlaps roughly with rainy and cloudy seasons and differs among regions due to complicated factors such as rice 

cultivar and water management. To solve these issues, several methods using Sentinel-1 time series have been 

proposed, because it is robust against cloud-cover conditions. However, these methods that use only Sentinel-1 

images have an issue in accuracy of extracting paddy field, because the backscatter of Sentinel-1 is less sensitive to 

vegetation and flooded condition than optical sensors with multi-bands (Torbick, 2017). In this study, to compensate 

for the weakness of Sentinel-1 time series in paddy field mapping, we propose a new method to reduce mis-

classification in mappings assisted by Sentinel-2, which is more reliable and robust for the extraction of flooded 

condition over various land surfaces. We developed a paddy field maps for East Japan in 2018 with 30m spatial 

resolution. Compared with the paddy field maps developed by our method and those by the conventional method 

using only Sentinl-1 time series, the potential of our method for broad scale paddy field mapping are demonstrated.  
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2. STUDY AREA & DATA 

 

2.1 Study Area 

 

Eastern part of Japan, including Hokkaido prefecture, Tohoku area, Kanto area and Niigata prefecture (24.2 – 45.7N, 

137.6 – 145.9E), was selected as a study area (Figure 1). The area includes several important rice production bases 

of Japan. According to the statistics announced by Ministry of Agriculture, Forestry and Fisheries of Japan (MAFF), 

the total paddy field area with rice planting in 2018 was approximately 9,016 km² and occupied about 4.6 % of the 

total area of the study area 195,389 km². Approximately 4.5 million tons of rice was produced in 2018, which 

accounted for about 60% of total rice production of Japan. 

 

Figure 1: Location map of the study area including 15 prefectures. In this paper, these 15 prefectures are indicated 

by the capital letter “(A)” to “(O)”. 

 

2.2 Sentinel-1A time series 

 

Sentinel-1 satellites were launched by the European Space Agency (ESA) on 3 April 2014 (Sentinel-1A) and 25 

April 2016 (Sentinel-1B). The SAR sensor aboard the satellite acquires images at C-band with 5.4 GHz in 4 modes, 

namely Strip map (SM), Interferometric Wide Swath (IW), Extra Wide (EW) and Wave, with different spatial 

resolutions and swath widths. We used images acquired in IW mode, which acquires images with a swath width of 

250 km and 5 m × 20 m spatial resolution. To minimize the effects of orbit directions and look angles, we only used 

images that acquired by Sentinel-1A satellite from a descending orbit with VH polarization. In this study, we focused 

on VH polarization, because previous studies show that VH-polarized backscatter is more sensitive to rice phenology 

than other polarizations (Nguyen, 2016 and Mansaray, 2017). Sentinel-1A satellite has a 12-days revisit cycle at the 

equator. Therefore, most of the study area are observed more than 30 times per year. From GEE, we accessed the 

Sentinel-1A time series, which consist of the all Sentinel-1A Ground Range Detected (GRD) images acquired from 

the “Transplant Start date” to the “Harvest End date” announced by MAFF in Table 1. 

 

2.3 Sentinel-2 MSI images 

 

Sentinel-2 satellites were launched by the ESA on 23 June 2015 (Sentinel-2A) and 7 March 2017 (Sentinel-2B). Both 

satellites have a 10-days revisit cycle respectively. And the satellites carry Sentinel-2 Multispectral Instrument (MSI), 

which is an optical sensor with 12 bands acquiring images with a swath width of 290km and 10-60 m spatial 

resolution. From GEE, we accessed the Sentinel-2 MSI Level-1C Top of Atmosphere (TOA) reflectance images 

acquired from the “Transplant Start date” to the “Harvest End date” in the study area by both satellites. 
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Table 1: Cultivation dates of each prefecture, which are average dates from 2015 to 2017 announced by MAFF.  

(A) to (O) correspond to those in Figure 1. 

  (A) (B) (C) (D) (E) (F) (G) (H) 

Transplant Start 19-May 15-May 10-May 3-May 15-May 13-May 9-May 28-Apr 

Transplant End 30-May 27-May 25-May 21-May 29-May 25-May 26-May 25-May 

Harvest End 10-Oct 16-Oct 20-Oct 15-Oct 15-Oct 14-Oct 23-Oct 29-Sep 

  (I) (J) (K) (L) (M) (N) (O)  

Transplant Start 1-May 22-May 28-Apr 18-Apr 29-May 18-May 4-May  

Transplant End 14-Jun 26-Jun 27-Jun 10-May 28-Jun 12-Jun 20-May  

Harvest End 17-Oct 1-Nov 26-Oct 17-Sep 20-Oct 21-Oct 3-Oct  

 

2.4 Reference data 

 

Two classes of reference fields, “Paddy field” and “Not paddy field”, were prepared for accuracy assessments. Using 

Google map Street View, 100 paddy fields were selected as “Paddy field” from each of the 6 prefectures, 

(A)Hokkaido prefecture, (B)Aomori prefecture, (F)Yamagata prefecture, (H)Ibaraki prefecture, (N)Kanagawa 

prefecture and (O)Niigata prefecture (Figure 2a). These 6 prefectures were selected because in some parts of these 

prefectures the Street Views were taken during the flooded period of paddy fields in 2018. By visual interpretations, 

the fields that were flooded and planted rice were selected as “Paddy fields”. Flooding management during cultivated 

period is a distinctive feature of rice different from other major crops. On the other hand, the agricultural field 

polygons released from MAFF were used as “Not paddy fields”. The agricultural field polygons were derived from 

high spatial resolution aerial photos. And the agricultural field polygons are specified “Paddy field” or “Not paddy 

field” by visual interpretations. To remove the uncertainty of the visual interpretations, 8 cities were selected where 

rice was not planted at all in 2018 based on national statistics released from MAFF (Figure 2b and 2c). The all 

agricultural field polygons specified “Not paddy field” of the 8 cities consisted reference fields of “Not paddy field”. 

The reference data consisted of 600 fields for “Paddy field” and 43,269 fields for “Not paddy field”. 

 

 

Figure 2: (a) 6 prefectures from which reference fields of “Paddy field” were selected. All agricultural fields of (b) 6 

cities in Hokkaido prefecture (A in Figure 1) and 2 cities in Saitama prefecture (K in Figure 1) were used as 

reference fields of “Not paddy field”. 

 

 

3. METHOD & VALIDATION 

 

A comprehensive flow chart is shown in Figure 3. In this study, two types of paddy field maps were developed by 

“S-1 method” and “S-1 & S-2 method” at each of the 15 prefectures in the study area. The all processes in the flow 

chart except accuracy assessment were performed in GEE.  

(a) 

(c) 

(b) 
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Figure 3: Flow chart of the paddy field mapping by “S-1 method” and “S-1 & S-2 method” 

 

3.1 Preprocessing  

 

The Sentinel-1A images that we accessed from GEE platform have been preprocessed using the Sentinel-1 Toolbox 

developed by the ESA to generate the backscatter coefficient σ⁰ with 5 steps, (1) Apply orbit file, (2) ground range 

detected border noise removal, (3) thermal noise removal, (4) radiometric calibration, (5) terrain correction. For 

these preprocessed images, we applied the median filter with 3 × 3 pixels moving window to reduce inherent speckle 

noise of SAR data (Mandal, 2018).  

Sentinel-2 MSI images are greatly influenced by cloud conditions. Therefore, the pixels including clouds and 

cirruses were removed from all Sentinel-2 MSI images according to Quality Assessment (QA60) band. Finally, 

cloud-free Sentinel-2 MSI datasets were readied. 

 

3.2 Step 1; Extracting provisional paddy field using Sentinel-1A time series “S-1 method” 

 

In Step 1, paddy field areas were provisionally extracted by the decision tree method using 3 masks described below 

for the time series of VH-polarized backscatter of Sentinel-1A. Decision tree methods using Sentinel-1 time series 

based on characteristics of rice phenology are one of the conventional methods for paddy field mapping (Nguyen, 

2016, Mansaray, 2017, Clauss, 2018 and Bazzi, 2019). 

(1) Forest area mask; A mask for forest area was made based on Hansen Global Forest Change v1.6 (2000-2018) 

which have been updated from the original Hansen’s map (Hansen, 2013). The pixels including a forest area more 

than 30% of a pixel area were specified as a forest pixel. In the Hansen’s map, forest area is defined by canopy 

closure for all vegetation taller than 5m in height. 

(2) Annual variation mask; The annual maximum σ⁰ value and the annual minimum σ⁰ value of the Sentinel-1A 

time series were calculated each pixel. And, the pixels that have the annual maximum σ⁰ smaller than −17 dB or 

annual minimum σ⁰ larger than −20dB, were masked. These conditions are valid to differentiate vegetation with 

clear seasonality, such as crops and deciduous forests, from land cover with a constantly low backscatter, such as 

waterbodies, or high backscatter, such as urban areas (Clauss, 2018). 

(3) Local variation mask; The local maximum σ⁰ value and the local minimum σ⁰ value of Sentinel-1A time series 

within 90 days moving windows were calculated for each Sentinel-1A image consisting the Sentinel-1A time series. 

The temporal σ⁰ signal of paddy fields has very distinct minima when the paddy fields are flooded and maxima at 

the heading stage of the rice plants (Clauss, 2018). The pixels that the local minimum σ⁰ larger than −22 dB or the 
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local maximum smaller than −17 dB, were masked for each Sentinel-1A images. 

The Forest area masking was performed to minimize commission error for mapping paddy field (Dong, 2016). And, 

the Annual variation masking was performed to reduce the amount of calculation for Local variation masking. It 

should be noted that the Forest area masking and the Annual variation masking were performed for the entire 

Sentine-1A time series, whereas the Local variation masking was performed for each Sentinel-1A image consisting 

Sentinel-1A time series. The pixels of Sentinel-1A images during a flooded term that were not masked by above 3 

types of masking, were extracted as a provisional paddy field. The flooded period means the period from the 

“Transplant Start date” to the date calculated by adding 30 days to “Transplant End date” in this study. We call the 

series of processes in Step 1 “S-1 method” in this paper. A paddy field map was developed by “S-1 method” for the 

purpose of comparison with a paddy field map developed by our proposed method. 

 

3.3 Step 2; Reclassifying provisional paddy field assisted by Sentinel-2 “S-1 & S-2 method” 

 

In Step 2, the provisional paddy field was reclassified based on water and vegetation indexes calculated from 

Sentienl-2 MSI images during the flooded period. Three optical-band indexes, Land Surface Water Index (LSWI), 

Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were calculated in each 

Sentinel-2 MSI image during the flooded period. The LSWI is known to be sensitive to the total amount of liquid 

water in vegetation and its soil background (Chandrasekar, 2010). And, the NDVI and the EVI are known to be 

sensitive to the variations of vegetations. These three indexes were calculated using the following equations: 

 

LSWI = 
NIR - SWIR

NIR + SWIR
(1) 

 

NDVI = 
NIR - Red

NIR + Red
(2) 

 

EVI = 
2.5 × (NIR - Red)

NIR + 6 × Red - 7.5 × Blue + 1
(3) 

 

where Blue, Red, NIR and SWIR are the top of atmosphere reflectance values of the B2 band (Central wavelength: 

492 nm), B4 band (665 nm), B8 band (832 nm) and B11 band (1610-1614nm) in the Sentinel-2 MSI. Previous 

studies have revealed that relationship between LSWI, NDVI, and EVI can effectively extract flooded condition (Gao, 

1996 and Boschetti, 2014). For each Sentinel-1A image to which the 3 masking were applied in Step 1, a local 

maximum “LSWI – NDVI” and “LSWI – EVI” value within 10 days after the date that the Sentinel-1A image 

acquired were calculated. The pixels that the local maximum “LSWI – NDVI” and “LSWI – EVI” are both smaller 

than -0.1 were masked. The pixels of Sentinel-1A images during a flooded term that were not masked by above 4 

types of masking in Step 1 and Step 2, were extracted as a paddy field finally. We call the series of processes in 

both Step 1 and Step 2 “S-1 & S-2 method” in this paper. 

 

3.4 Accuracy assessment 

 

The accuracies of paddy field maps were assessed by producer’s accuracies based on pixel-scale. The producer’s 

accuracy indicates the quality of the classifications and be calculated by dividing the correctly classified pixels in 

each category by the number of reference set pixels of the corresponding category. All pixels of paddy field maps 

spatially included in two types of reference fields polygons were subjects to accuracy assessments. The processes 

of accuracy assessments were performed in ArcMap 10.5.1. 

 

 

4. RESULT & DISCUSSION 

 

4.1 Result 

 

The producer’s accuracies of “Paddy field” and “Not paddy field” are shown in table 2. The producer’s accuracies 

were 58.7-86.3% by “S-1 method” and 82.7-85.0% by “S-1 & S-2 method”. Furthermore, the producer’s accuracies 

of each “Paddy field” and “Not paddy field” reference regions are shown in table 3 and table 4, respectively. The 

producer’s accuracies of each of the “Paddy field” reference regions were 76.8-100.0% by “S-1 method” and 76.3 

– 100.0% by “S-1 & S-2 method”. The producer’s accuracies of each of the “Not paddy field” reference regions 

were 52.7-99.5% by “S-1 method” and 74.0 – 99.6% by “S-1 & S-2 method”. The paddy field maps developed by 

“S-1 method” and “S-1 & S-2 method” are shown in Figure 4, and total paddy field areas of the two paddy field 

maps and official announced values by MAFF are shown in Table 5.  
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Table 2: Accuracy assessment for paddy field mapping. 

Method Accuracy type Paddy field Not paddy field 

S-1 method Producer's accuracy 86.3% 58.7% 

S-1 & S-2 method Producer's accuracy 85.0% 82.7% 

 

 

Table 3: Producer’s accuracies of each “Paddy field” reference region. 

Method (A) (B) (F) (H) (N) (O) 

S-1 method 91.0% 83.2% 81.9% 76.8% 81.1% 100.0% 

S-1& S-2 method 88.4% 83.2% 80.0% 76.3% 80.3% 100.0% 

 

 

Table 4: Producer’s accuracies of each “Not paddy field” reference region. 

Method (a) (b) (c) (d) (e) (f) (g) (h) 

S-1 method 69.9% 52.7% 55.7% 56.9% 66.8% 55.7% 99.5% 94.4% 

S-1& S-2 method 97.2% 97.8% 74.3% 74.0% 95.3% 93.6% 99.6% 95.7% 

 

 

 

 
Figure 4: Paddy field maps developed by (a) “S-1 method” and (b) “S-1 & S-2 method” 

 

 

Table 5: Total paddy field areas of the two maps developed by “S-1 method” and “S-1 & S-2 method”, and official 

announced values from MAFF. (A) to (O) correspond to those in Figure 1. 

  (A) (B) (C) (D) (E) (F) (G) (H) 

S-1 method (ha) 492,812 55,129 44,255 79,126 93,527 70,688 60,552 68,363 

S-1 & S-2 method (ha) 252,464 52,663 42,094 73,977 90,708 64,905 56,107 66,066 

MAFF (ha) 106,400 50,300 55,900 74,900 90,900 69,100 71,200 77,000 

         

  (I) (J) (K) (L) (M) (N) (O) Total 

S-1 method (ha) 55,468 18,197 27,531 51,646 312 1,740 132,872 1,252,218 

S-1 & S-2 method (ha) 52,783 13,946 26,039 50,444 255 1,661 126,333 970,445 

MAFF (ha) 69,300 17,300 33,600 61,000 133 3,090 121,500 901,623 

 

(a) (b) 
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4.2 Discussion 

 

This study shows the potential of our proposed paddy field mapping method “S-1 & S-2 method”, which uses 

Sentinel-1A time series assisted by Sentinel-2, by comparing with a conventional paddy field mapping method “S-

1 method”, which uses only Sentienl-1A time series. The results of the producer’s accuracies in Table 2 show that 

the “S-1 & S-2 method” was 1.3 point lower than the “S-1 method” for “Paddy field”, but 24.0 point higher for 

“Not paddy field”. The “S-1 & S-2 method” performed one more masking than “S-1 method” for extracting of 

paddy field, therefore the producer’s accuracy of “Paddy field” by “S-1 & S-2 method” was necessarily lower than 

it by “S-1 method”. However, the difference between the two producer’s accuracies of paddy field was only 1.3 

point, and so we believe it does not seriously affect the accuracy of paddy field extraction. Therefore, the “S-1 & 

S-2 method” is considered to be one of effective paddy field mapping approaches by reducing mis-classification in 

“Not paddy field”. 

However, the results in Table 4 shows that the effects for reducing mis-mapping by the “S-1 & S-2 method” were 

different among the regions. The first possible cause of the inter-regional variation in accuracy is gaps of the 

Sentinel-2 data due to clouds covering. Because there aren’t any cloud-free Sentinel-2 images during the flooded 

period, the masking in Step 2 could be ineffective. Other causes that could make the differences of the effects are 

differences of cultivated crops, but the true cause has not been clarified in this study. 

As confirmed in Table 3, the producer’s accuracies of the paddy field by the two methods were different among the 

reference regions. The maximum difference was 23.7 point between Ibaraki prefecture and Niigata Prefecture by 

“S-1 & S-2 method”. The local minimum threshold that intends for extracting flooded conditions, in the Local 

variation mask are set referring to the existing studies (Clauss, 2018, Mandal, 2018 and Bazzi, 2019) that intends 

for mapping paddy fields outside Japan. However, flooding management methods greatly differ among regions 

according to climate, water resource, cultivar and other factors. Therefore, even in the study area, the best threshold 

should be selected depending on the regions.  

The results in Table 5 shows that the paddy maps developed in this study, overestimated in Hokkaido prefecture. 

Compared with other prefectures, the field area that cultivated crops other than rice in Hokkaido prefecture is much 

larger. Furthermore, most of fields are leveled very flat before planting crops. In this case the Sentinel-1A time 

series might show the similar time series variations to the paddy field. Therefore, it is considered that many mis-

classifications in “Not paddy field”, which could not be removed even with the mask in Step 2, remained. 

 

 

5. CONCLUSION 

 

This study demonstrated the potential of our new paddy field mapping method using Sentinel-1A time series 

assisted by Sentinel-2 to compare to the conventional paddy field method using only Sentinel-1A time series.  

Our method including the additional mask based on the LSWI, NDVI and EVI calculated from the Sentinel-2 MSI 

images during the flooded period, was more effective than the conventional method without Sentinel-2 for reducing 

mis-classification in cultivated fields other than paddy fields.  

However, the effects for reducing mis-classification were different depending on the regions. These differences 

were possibly attributable to complicated factors such as the gaps of Sentinel-2 cloud-free images and the 

differences of cultivated crops. 

Although our method showed the great effect for reducing mis-classifications, the producer’s accuracy of “Paddy 

field” reference fields was not satisfactory values, and mis-classifications remain especially in Hokkaido prefecture. 

In order to further improve accuracies of broad scale paddy field mapping, it is necessary to make great efforts such 

as finding the optimal threshold value that is more appropriate for the characteristics of paddy fields in the region. 
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