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ABSTRACT: Early detection of adverse tree health condition can minimize the risk of unexpected tree failure 

and increase the plant survival rate by providing timely remedial measures. Conventional arboriculture practice 

relies on visual inspection to assess the tree health condition and to identify tree defects. However, the hidden 

defects, e.g. cavity, are not easy to be detected using this method. Some advanced assessments, for example using 

resistograph and tomography, are usually conducted, but these invasive instruments would cause irreversible 

damage to the trees. Thermal infrared technology which is a non-invasive method provides an alternative solution 

to detect abnormal tree condition especially structural defects by comparing the difference in surface temperature 

between healthy part and unhealthy part of a tree trunk. Although some researchers introduced similar ideas in their 

studies, most of them interpreted the thermal images of trees with visual interpretation only and thus there is a 

research gap of how to extract the abnormal tree parts automatically. This paper proposed a methodology by 

combining k-means clustering and Sobel gradient filter to identify the area of the tree trunk with potential hidden 

defects. This method first groups the trunk area with similar surface temperature into clusters and then determines 

the locations with large variations of temperature. By combining these two factors, potential cavities can be 

identified based on the temperature differences. This method has been exanimated with trees in four species groups, 

where each group has at least one tree known to have structural defects and one healthy tree. This paper also 

investigated the variables affecting the ability to detect tree cavities from thermal images, e.g. acquisition time, 

humidity, temperature, light intensity, weather condition, the distance between camera and tree, and surface 

roughness of tree bark. The optimized capturing conditions have been determined, and the thermal images captured 

in these conditions can clearly identify the internal cavities of the tree trunk. The results from this study have been 

verified by a certified arborist with on-site checking of target trees. 

 

1. INTRODUCTION 

 

Thermal infrared imaging is the technology to measures the temperature of an object using a thermal infrared 

camera. The camera can measure the infrared radiation emitted from the target that an object having a higher 

temperature emits more infrared radiation. This method is considered as a non-invasive technology to measure 
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temperature as no direct contact with the target is required, which can capture the image at a certain distance with 

the object (Catena and Catena, 2008). Thermal infrared imaging technique has been used in numerous applications, 

for example, detecting cracks or leaks of building structures, monitoring the heat flow of electrical components to 

prevent overheating, regulating the temperature of industrial devices during operations, fast screening of body 

temperature. By analyzing the absolute temperature of the target object or the relative temperature with its 

surrounding, the abnormal condition can be spotted out and appropriate action can be taken. 

 

Conventionally, the assessment of tree health condition and the detection of structural tree defects, e.g. wood decay, 

cavities, cracks, wound, deadwood and split, relies on the professional judgment of arborists with on-site visual 

inspection (Matheny and Clark, 1994). Early detection of these structural problems minimizes tree failure risk by 

taking timely action. The delay in detecting these defects would cause irremediable consequences to human life 

and properties because of the high risk of tree failure. To prevent the unexpected accidents caused by tree failure, 

the arborists usually use more advanced equipment, e.g. resistograph and tomography, for further investigation if 

unusual tree condition was found from visual inspection (Vidal and Pitarma, 2019). However, these advance 

methods are often invasive and would cause irreversible damage to the trees. In addition, some of the defects are 

not always visibly seen, and thus there is a lack of scientific fast-screening method for identifying the potential 

hidden structural tree defects. 

 

Researchers investigated the feasibility of applying thermal infrared imaging technology to detect abnormal tree 

conditions. Vidal and Pitarma (2019) reviewed the studies conducted by other literature on this application. Most 

of the studies focused on pest detection and water stress detection, but very limited number of them focused on the 

wood decay as well as cavity. Catena, Palla and Catalano (1990) proposed to detect structural tree defects by 

analyzing the surface temperature of tree trunk and found that the temperature of tree bark surface presented 

different temperatures of the wood areas with decay that the temperature of decayed areas are usually cooler than 

the surroundings. Because of the different moisture content of tree trunk with and without cavity, the emissivity 

are different which result in different temperature measured by thermal camera even they are in same temperature 

(Catena and Catena, 2008). The variation of temperature pattern is a symptom of unhealthy condition and enabled 

early detection of tree cavity in a scientific means. Depending on the type and level of decay, trees would have 

different cooling effects on the surface temperature. Therefore, this technology can help to estimate the extent of 

the decay by comparing the temperature difference between healthy and unhealthy part.  

 

Burcham et al. (2011) conducted an experiment to correlate the relationship between the size of voids inside a tree 

trunk with the surface temperature. Three artificial voids in different sizes were created and thermal images were 

captured together with a control set without void every 30 minutes for 150 minutes. Air temperature, relative 

humidity and solar irradiance were recorded for each measurement. The results suggested that thermal images 

captured on the two smaller voids were sensitivity to the voids, but there was no significant effect caused by the 

largest void. Leong, Burcham and Fong (2012) evaluated the temperature change of healthy part and decay part 

during heating up and they suggested to derive the percentage of decay from the temperature ratio between normal 

part and decay part. However, the relationship was species-dependent and thus large-scale sample collection of 

woods or trees with different levels of decay was required in order to establish a library for the application of 

model. 

 

The thermal infrared technique required correct visual interpretation of infrared imaging which depends on the 

professional judgment of the interpreter (Catena et al., 1990). There are some factors causing the misinterpretation, 

for example, the obstructions, e.g. leaves and moss, covering the tree bark, the roughness of the tree bark, and the 
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absorption of the infrared radiation by water (Catena, 2003). Catena and Catena (2008) reported that the direct 

solar radiation could be a source of error which masked the underlying wood temperature and it was hard to identify 

the structural defects of trees from thermal images which were captured under strong sunlight. From the restrictions 

found by the researches, the thermal images should be captured under serious considerations to prevent 

misinterpretation. Catena (2003) suggested not to capture the image with direct sunshine and capture at the shade 

side of the tree if there is direct sunlight to the target tree. Since water would absorb the energy emission from the 

tree, the images should not be captured in the environment with high humidity and rainy day. Catena (2003) also 

suggested thermography can be used in both day and nighttime with temperature ranging from 2 °C to 35 °C.  

 

Though some experiments were conducted by the literature, the number of trees tested was very limited. The 

interpretation of the thermal images was mainly based on the visual analysis and the external environmental factors 

were not considered scientifically. Therefore, this paper proposed an automatic methodology to identify the area 

of tree trunk with potential hidden cavity as well as to analyze the environmental factors which affect the discerning 

ability of using this method. 

 

2. Data Source 

 

In order to understand the relationship between the temperature, tree defects, species and the condition of thermal 

images captured, fieldwork was conducted in January and February 2019 to acquire thermal images of four groups 

of target trees based on tree species. The four species were Crateva unilocularis, Delonix regia, Artocarpus 

hypargyreus and Cinnamomum camphora, and each group has one healthy tree and one tree with known structural 

defects. Figure 1 illustrates the thermal images of the four trees with cavities. Therefore, there are eight trees in 

total for this study. Experiment was conducted using thermal camera FLIR T650sc with the specifications listed 

in Table 1. This camera can capture high-resolution thermal images with high thermal sensitivity with small 

variation of temperature on a tree. 

 

 

Figure 1. Thermal Images of Tree with Cavity (a) Crateva Unilocularis; (b) Delonix Regia; (c) Artocarpus 

Hypargyreus; and (d) Cinnamomum Camphora 
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Table 1. Specifications of FLIR T650sc 

Item Specification 

Resolution 640 x 480 pixels 

Temperature range -40 °C to 650 °C 

Thermal sensitivity < 0.020 °C 

Image frequency 30 Hz 

Accuracy +/- 1 % 

Angle of lens 45° x 34° 

 

For each of the target tree, thermal images were captured from the morning to evening (i.e. 9 am to 6 pm). Several 

stations were set up focusing on a specific area of the target trees, and images were captured at one-hour interval 

at every station. Figure 2 shows an example of four viewing aspects to a tree Crateva unilocularis with known 

cavity. For each of the measurement, the camera station, time, relative humidity, air temperature, light intensity, 

weather and the distance between camera and tree were recorded for the analysis of the environmental factors to 

the thermal imaging processes. Therefore, there are eight to nine thermal images captured at each of the stations 

and the temporal changes of temperature can be observed. The background of thermal images was then masked 

out for further processing. 

 

 

Figure 2. Four Viewing Aspects to a Target Tree Crateva Unilocularis 

 

3. METHODOLOGY 

 

3.1 Optimization of Conditions for Data Acquisition 

 

The multi-temporal thermal images captured in the fieldwork were undertaken for analyzing the optimized 

conditions for data acquisition. Visual analysis was conducted to classify the thermal images into two groups, i.e. 

good quality and bad quality, in both colour thermal map and the greyscale thermal map. The criterion of the 

classification depended on whether there existed obvious contrast in temperature between the healthy and 

unhealthy part of the tree. The images were labelled as bad quality if the temperature distribution was under 

abnormal condition, for example, the image was unable to show the temperature difference on the tree trunk with 

existing cavity, large portion of the tree trunk was shaded by the surrounding, unusual temperature distribution 

existed, the tree was heated by external factors (e.g. a nearby vehicle), etc. Otherwise, the images were labelled 

as good quality if the known tree cavities were clearly identified. 
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In order to understand the factors influencing the quality of thermal images for structural defects detection, 

logistic regression models were developed using the independent variables recorded during the fieldwork, 

including time, air temperature, relative humidity, light intensity, weather, bark texture, and the distance between 

camera and tree (Table 2). Among the parameters, time is ordinal; air temperature, light intensity, relative 

humidity and distance between camera and tree are continuous; weather and bark texture are nominal. Four 

logistic regression models were generated using (i) colour thermal images only, (ii) greyscale thermal images 

only, (iii) colour or greyscale thermal images, and (iv) colour and greyscale thermal images. 

 

Table 2. Independent Variables of Logistic Regression 

Independent Variable 
Type of 

Variable 

Number of 

Parameters 
Range / Parameters 

Time (hour) Ordinal 10 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 

Air temperature (°C) Continuous - [16.5, 30.8] 

Relative humidity (%) Continuous - [38.0, 92.6] 

Light Intensity (lx) Continuous - [0, 6790] 

Weather Nominal 3 Sunny, Sunny with cloud, Cloudy 

Tree bark texture Nominal 2 Smooth, Rough 

Distance between camera 

and tree (m) 
Continuous - [2, 15] 

 

3.2 Automatic Structural Defect Detection 

 

This paper proposed a methodology to identify the area of tree truck with potential structural defects by combining 

k-means clustering and Sobel gradient filter. K-means clustering is an unsupervised machine learning algorithm 

which separates the data into k clusters so that the data are the closest to the centre of cluster (Jain, 2010). Since 

the literature suggested the cavity usually has a lower temperature when compared with the healthy parts, the 

clusters with abnormally low temperature can be identified with this approach. The number of clusters (k) and 

the number of classes with lowest temperature (n) are the critical factors of the clustering result. Different 

combination results were tested, and Figure 3 shows three of the examples of the clustering results where the 

temperature increasing from purple, yellow, green and blue. In this study, all the tree trunk analyses were 

conducted with nine clusters (k = 9) with five lowest temperature classes (n = 5). 

 

 

Figure 3. Results of K-means Clustering with (a) k = 8, n = 5; (b) k = 9, n = 5; (c) k = 9, n = 6 
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Although k-means clustering can identify the clusters with low surface temperature, the cooling effects could be 

the results of various factors, for example, the shadow cast by the leaves, the wet moss, the change of temperature 

because of the sunlight. Therefore, the absolute temperature cannot be the only indicator of the symptom of the 

existence of the cavity. Another element of the potential hidden defect is the sharp change in the temperature 

caused by the variation of wood density. In order to detect the drastic change of the tree temperature, Sobel 

gradient filter was used in this study. Sobel gradient filter is an edge detection filter which emphasizes the edges 

by calculating the approximate derivatives in both horizontal and vertical directions (Gao et al., 2010). Since the 

variations of temperature change were different in different trees with thermal images captured under 

environmental conditions, feature scaling was applied to the gradients. With the edges found, a disk maximum 

pooling was applied to determine the maximum value of gradient within a disk size in a predefined pixel and to 

estimate the area with large variation of temperature change when compared with the surrounding areas. In this 

study, disk size of 9 pixels and the threshold value of 0.2 were used to filter out the area which has low level of 

temperature changes. 

 

 

Figure 4. Results of Thermal Images after Applying Sobel Gradient Filter, Feature Scaling and Maximum 

Pooling (a) Disk Size = 5, Gradient Threshold = 0.1; (b) Disk Size = 9, Gradient Threshold = 0.1; and (c) Disk 

Size = 13, Gradient Threshold = 0.1 

 

With the combination of k-means clustering and Sobel gradient filter, the areas which have potential hidden 

structural defects can be identified based on the sharp change of temperature and the relatively low temperature 

when compared with the other areas. 

 

4. RESULTS 

 

4.1 Optimization of Conditions for Data Acquisition 

 

Table 3 summarizes the results of the significant factors from the four logistic regression models. The results 

suggested that the capturing time was the critical factor to the quality of image that this factor was found to be 

significant from all models with p-value smaller than 0.01. From the table, the appropriate image acquisition time 

ranged from 12:00 to 15:00. The interpretation from visual analysis was also aligned with this finding that the 

temperature differences between the healthy part of trees and the location with cavity were the highest at noon.  

 

Moderate light intensity, high relative humidity and long distance between camera and tree were also found as 

significant factors for good image quality, rough tree bark and sunny weather had adverse effects on the images 
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(Table 3). The factor of moderate light intensity and avoiding the sunny weather agreed with the statement from 

Catena (2003) that direct sunlight on the tree was not preferred for the purpose of cavity detection. This finding 

pointed out that the thermal images should be captured at cloudy day and thus the direct sunlight would not cause 

a considerable impact on the tree surface temperature. The capturing distance and the tree bark texture also decided 

the quality of the thermal images which increased the level of noise. The very high level of details captured at a 

close distance or the rough tree bark would affect the generalization ability of the thermal images because of the 

irregular temperature patterns. Therefore, there is a tradeoff between the spatial resolution which is determined by 

the capturing distance and the acceptable noise level. 

 

Table 3. Results of Significant Factors from Logistic Regression Models 

Image P-value Significant Factors 

Colour thermal images  

0.05 ≤ p < 0.1 - 

0.01 ≤ p < 0.05 - 

p < 0.01 
Good quality:  

 Time: 12:00-14:00 

Greyscale thermal images 

0.05 ≤ p < 0.1 
Bad quality: 

 Sunny 

0.01 ≤ p < 0.05 

Good quality: 

 Long distance between camera and 

tree 

 High relative humidity 

Bad quality: 

 Rough tree bark 

p < 0.01 

Good quality: 

 Time: 12:00-15:00 

 Moderate light intensity 

Colour or greyscale thermal 

images 

0.05 ≤ p < 0.1 

Good quality: 

 Long distance between camera and 

tree 

 High relative humidity 

0.01 ≤ p < 0.05 
Good quality: 

 Moderate light intensity 

p < 0.01 
Good quality: 

 Time: 12:00-14:00 

Colour and greyscale thermal 

images 

0.05 ≤ p < 0.1 - 

0.01 ≤ p < 0.05 

Good quality: 

 Moderate light intensity 

Bad quality: 

 Rough tree bark 

p < 0.01 
Good quality: 

 Time: 13:00-15:00 
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4.2 Automatic Structural Defect Detection 

 

After determining the suitable conditions for capturing thermal images, the thermal images captured at around 

noon were extracted and performed the automatic structural defect detection. The true colour images, thermal 

images, results of k-means clustering, result of Sobel gradient filter and the final detection maps of the four target 

trees with known defects are shown in Figure 5 to Figure 8, and the control group was presented in Figure 9. In 

the final detection map, blue area presents a normal condition, while the green, yellow, red and purple represents 

slight low-level abnormal, low-level abnormal, moderate-level abnormal and high-level abnormal situations. 

 

 

Figure 5. Images of Defect Tree Crateva Unilocularis (a) True Colour Image; (b) Thermal Image; 

(c) K-means Clustering; (d) Sobel Gradient Filter; (e) Final Detection Map 

 

 

Figure 6. Images of Defect Tree Delonix Regia (a) True Colour Image; (b) Thermal Image; 

(c) K-means Clustering; (d) Sobel Gradient Filter; (e) Final Detection Map 

 

 

Figure 7. Images of Defect Tree Artocarpus Hypargyreus (a) True Colour Image; (b) Thermal Image; 

(c) K-means Clustering; (d) Sobel Gradient Filter; (e) Final Detection Map 
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Figure 8. Images of Defect Tree Cinnamomum Camphora (a) True Colour Image; (b) Thermal Image; 

(c) K-means Clustering; (d) Sobel Gradient Filter; (e) Final Detection Map 

 

 

Figure 9. True Colour Image and Final Detection Map of Healthy Trees (a) Crateva Unilocularis; 

(b) Delonix Regia; (c) Artocarpus Hypargyreus; and (d) Cinnamomum Camphora 

 

By analyzing the results of k-means clustering and Sobel gradient filter, the patterns are irregular on trees with 

rough bark (i.e. Artocarpus hypargyreus and Cinnamomum camphora). The result suggested that Sobel gradient 

filter is sensitive to surface bark texture, especially to the species Artocarpus Hypargyreus, and the rough bark 

would cause noise to the result because of the large variation of temperature on the surface. While the Sobel 

gradient filter maps were smooth with species Crateva Unilocularis and Delonix Regia which have smooth bark 

texture, and the maps highlighted the areas with cavities only.  

 

From Figure 5 to Figure 8, the areas with potential structural defects are clearly seen from the detection image. 

Figure 5 indicated the tree Crateva unilocularis has a large cavity at the root plate and two small voids located at 

the upper part of the trunk. On-site verification was conducted by certified arborist that a cavity exists with 

dimension of 470 × 140 × 40 mm at tree base. Figure 6 and Figure 8 suggested the tree without internal decay 

except the voids which are visibly seen, and the on-site checking also agreed with this finding. Figure 7 shows 

an obvious trend of decay at right hand side of image, although there the noise slight affecting the interpretation. 

On-site checking found that there were two evident voids at tree trunk, but the internal extent needed further 

investigation. Therefore, this tree was found suspicious in this study and more in-depth verification will be 
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conducted focusing on this tree by using tomography. By observing the results of healthy trees in Figure 9, the 

images show large portion of normal condition and confirmed that there were no significant defects or symptom 

to decay. 

 

5. CONCLUSION AND FUTURE WORK 

 

This paper presents the ability of thermal infrared technology to identify the internal invisible tree cavities with a 

fast and non-invasive approach with optimized capturing condition and automatic detection method. The proposed 

method was able to distinguish the trees with and without defect and indicate the extent of internal cavities. The 

thermal images were recommended to be captured at noon on a cloudy day with longer distance between camera 

and the tree. Although the rough tree bark is unfavorable to the image quality, this factor is ineradicable. In this 

study, thermal imaging on the trees with rough tree bark was found challenging in both data acquisition and the 

algorithm development. To tackle the limitations of this study, more fieldwork will be conducted to capture thermal 

images with more diverse tree species, more samples for every species and during different seasons. In addition, 

improvement of the algorithm with rough tree bark will continue with the more samples. Furthermore, field 

verification will be conducted using professional arboricultural equipment, e.g. tomograph, for comprehensive 

comparison between the results and tree conditions. 
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