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Abstract: This study aimed to develop a method of assessing the AGB/carbon stock of a tropical lowland 

rainforest with a vertically complex structure. The method utilizes the complementary strengths of airborne 

LiDAR and terrestrial laser scanning system to assess the upper and lower canopies of the forest to achieve 

reasonable results. The method was implemented in Ayer Hitam Forest Reserve in Malaysia. The upper canopy 

layer was assessed by generating tree parameters using airborne LiDAR to obtain height from CHM and 

segmenting the Orthophoto to obtain CPA. DBH was modelled through multiple regression using the derived 

parameters as independent variables and the field DBH as the dependent variable. The modelled DBH achieved an 

R2 value of 0.90 and RMSE of 0.02 cm for the 16 plots. To estimate the AGB an allometric equation was applied 

to the modelled DBH together with LIDAR derived height. The modelled AGB was validated using the field DBH 

and LiDAR derived height. The derived model has an R2 of 0.98 and RMSE of 69.44 Kg for the 16 plots.  

The lower canopy layer was assessed using the registered scene from the TLS. This is to complement the trees that 

were not identified from the upper canopy layer. Scanned trees in the plot were extracted. Then DBH and height 

parameters were measured using RiSCAN Pro software interface. These parameters were then used for the 

allometric equation to estimate the AGB for the lower canopy. The correlation of the TLS measured DBH and 

field measured DBH was established and achieved an R2 value of 0.99 and RMSE of 1.03 cm. The modelled AGB 

was estimated using the TLS measured height and DBH by applying the allometric equation. The model was 

validated using the field measured DBH and TLS derived height. The result was a model with an average R2 value 

of 0.99 and RMSE of 19.23 Kg for the 16 plots. The derived AGB from the upper and lower canopies were 

combined. The accuracy of the complementary method of deriving the estimated AGB from the two sensors was 

assessed by obtaining the R2 and RMSE of the two sensors. The achieved R2 and RMSE is 0.98 and 188.35 kg 

respectively for the 16 plots.  

The results in this study presented a potential method of addressing the need to provide accurate AGB/carbon 

assessment for a complex multi-layered tropical rain forest. 

Keywords:  Airborne LiDAR, Terrestrial laser scanner (TLS), Segment, AGB, allometric equation. 

 
1. Introduction 

The ecosystem function of forests to store carbon play an important role in the global agenda of climate change. 

Carbon stored in forests serve as an important natural brake on climate change (Gibbs, et al 2007). The ecosystem 

disturbance of forest due to deforestation and degradation convert forests into carbon sources instead of sinks. The 

mitigating instrument implemented to address the emissions from deforestation and forest degradation in 

developing countries is reducing emissions (REDD+), plus stands for conserving and enhancing forest stocks and 

sustainable management of forests  (Corbera & Schroeder, 2011, Pistorius, 2012).  

The objectives of the REDD+ is the sustainable and time bound reduction of forest related greenhouse gas 
emissions. The program requires functional and sustainable national monitoring and verification (MRV) systems. 
Estimating greenhouse gas (GHG) emissions according to the United Nations Framework Convention on Climate 
Change (UNFCC) must be based on the guidelines set by the Intergovernmental Panel on Climate Change (IPCC). 

This is based on the use of remote sensing techniques and ground based forest carbon inventory (UN-REDD 
programme, 2015). The applicability of the method however is dependent on the specific type of forest, the 
complexity of the geographical location and conditions of the forest (Ediriweera, et al., 2014;Tonolli et al., 2011).   
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For tropical lowland rainforest like Ayer Hitam Forest Reserve (AHFR) this poses a challenge. The structure of 
this type of forest is  stratified according to different layers (Walter et al., 1973). These are classified as emergent, 
canopy, understory and forest floor (Figure 1). The distinct stratification is due to the optimal conditions for rapid 

plant growth and competition. Carbon assessment therefore must account for the trees in all the canopy layers.  

 

Figure 1. Structure of a tropical lowland tropical rain forest. 

Under the REDD+ framework monetary incentives can only be provided for carbon reduction initiatives if above 
ground biomass (AGB) of this type of forest will be accurately accounted through remote sensing methods. 
However, as reviewed by Koch (2010) there is very  limited information on LiDAR derived data for biomass 

mapping in the tropics. Moreover as pointed out by Hirata et al., (2012) there is a need for separate biomass 
assessment methods to appropriately assess multi-layered tropical forests. A new approach of accurately assessing 
the AGB of a vertically complex tropical rainforest has to be developed in answer to the REDD+ requirement. The 
overall concept of this study is the synergistic use of airborne LiDAR with an Orthophoto for the assessment of 

the emergent and canopy layers of the forest. Complementary to this, is the use of a terrestrial laser scanner for the 
assessment of the understory layer of the forest. Due to the distinct vertical structure of this type of forest its 
assessment would require both airborne and terrestrial remote sensors that can detect tree structural parameters 
across different layers. These laser sensors have their inherent strength and weakness when applied to temperate 
forests (Van Leeuwen et al., 2011).  

Airborne laser sensors have limitations to characterize vegetation structure in the lower canopy. Whereas 
terrestrial laser sensors are biased towards lower parts of the canopy (Hilker et al., 2010). Studies on the 
integration of these technologies in temperate forests enhances the detail of structural information (Chasmer et 

al.,2006; Hilker et al., 2010). The complementary application of these remote sensing technologies in a lowland 
tropical rainforest as of this writing has yet to be tested. This innovative concept was studied if it has the potential 
to provide a robust information on the accurate assessment of AGB for a vertically complex tropical rain forest for 
the application of REDD+ program.  

2. Materials and Methods 

2.1 Study Area 

Ayer Hitam tropical rain Forest Reserve (AHFR) is a logged over lowland mixed-dipterocarp forest in the State of 
Selangor, Malaysia which covers an area of 1,248 hectares (Ibrahim, 1999)  Figure 2. The forest is one of the three 
remaining lowland dipterocarp forests in the Klang Valley. It has been isolated from the neigh boring forests due 
to the residential and other economic development that surrounds the whole forested area (Nurul Shida et al., 
2014). AHFR’s location is 3° 01' N and 101° 39' E shown in Figure 1. The forest reserve has distinct 
topographical characteristics namely ridge, hillside and valley. The elevation ranges from 15m to 233m.  The 
slope of the terrain is 34o. The temperature ranges from 22 to 32 oC, the average relative humidity is 83% and the 
annual rainfall is 2,178 mm. The forest reserve has been leased to the University of Putra in Malaysia (UPM) for 
80 years for education, research and extension purposes (Ibrahim, 1999). 

Figure 2. Location map of Ayer  
Hitam Forest Reserve. 
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 2.2 Biometric Data Acquisition 

The actual field work was done from Sept. 29 to Oct. 12, 2015  to collect the ground truth primary data of the 

study area. Using Arcmap software World View3 image of the study area was georeferenced to WGS 84 Zone 

47N. Gridlines were drawn in the final map layout and potential plots were plotted to ensure that a 50m distance 

between plots. The map with the potential plots were then uploaded into the Google NexusTablet and used for 

navigation during field data collection. Circular plots of 13m depending on the slope were demarcated to obtain 

a 500 m2 area plot. Within the demarcated plot DBH of trees having a 10 cm or greater DBH were measured. To 

obtain uniform DBH from the ground a 1.3 m measured stick was used as standard measuring guide above the 

buttress of each tree (Maas et al., 2008). Trees with less than 10 cm DBH were not considered because they do 

not contribute much to the carbon of the forest (Brown, 1999). Height of these measured trees were measured 

using Leica DISTO D510 Laser Ranger. 

2.3 Airborne LiDAR and Orthophoto 

Airborne LiDAR and Orthophoto data was provided by the University of Putra Malaysia. This was acquired on 

July 23, 2013. These data sets were used to assess the upper tree canopy. This was acquired using LiteMapper 

5600 a waveform-digitizing LiDAR for terrain and vegetation mapping system. The point cloud density of the 

airborne LiDAR data is 5-6 points per m2. This was flown over at 80–100 knot speed at 600m–1000 m above the 

ground. The manoeuvre would provide data with sufficient point densities and footprint sizes to achieve at least 

3 points/m2. The laser footprint covered targeted areas with an average overlapping of 50% between adjacent 

flight lines. The maximum scan was set at 11°; pulses transmitted at scan angles that exceeded 8° were excluded 

from the final data in order to avoid low-quality data at the edge of strips (Hug et al., 2004). 

The Orthophoto was taken simultaneously with the acquisition of the airborne LiDAR data. The spatial 
resolution of the image is 13 cm. The Lite Mapper-5600 system is equipped with an IGI DigiCAM to 
complement the LiDAR data. The coverage of the camera is the same swath as what the LiDAR system sees. 
This provided a high resolution imagery of the surface in true color to aid surface classification and to provide 
extra planimetric resolution (Hug et al., 2004). The calibrated lenses of the DigiCAM is tightly integrated with 
the LiteMapper-5600 and the IGI CCNS-4 flight management systems to facilitate reliable and easy operation. 
The camera is mounted together and boresighted with the laser scanner and the IMU to enable direct 
georeferencing of its images and automated ortho image generation using the DSM output of the LIDAR system 
(Hug et al., 2004). 

2.4 Terrestrial Laser Scanner 

Terrestrial laser scanner (TLS) data was acquired to assess the lower tree canopy. To ensure the quality of the 
acquired TLS point cloud data appropriate scanning steps were implemented. Namely, 1) plot preparation 2) tree 
tagging with numbers and 3) setting the multiple scan position. Multiple scanning was employed to produce 
better three dimensional scanned object.  This is to ensure sufficient overlap of the scanned image and obtain 
better canopy height without compromising the quality of the point cloud data (Watt & Donoghue, 2005). 
Moreover, employing multiple scans will improve DBH measurement accuracy compared to single scans 
(Kankare et al., 2013). Retro-reflective objects (tie points) were established which serve as reference points for 
co-registration of the multiple scans. The TLS instrument RIEGL-VZ-400 was set on the tripod with the NIKON 
D610 camera mounted on top. Scan position was then fixed after which fine scanning of the reflectors was done 
to register the multiple scans. 

2.5 Methods 

Forest structural metrics for the different canopy layers of the forest were derived based on the data available. 

Thus, different methods were implemented both for the upper and lower canopy layers. Application of these 
methods were essential to derive AGB of the forest.  For the upper canopy, CHM and DBH are requisites to 
model the DBH. Accuracy of the modelled DBH was assessed based on the field measured DBH. The modelled 
DBH and height from CHM was used to derive a modelled AGB using an allometric equation. Accuracy of the 
modelled AGB was validated based on the calculated AGB using the field measured DBH and CHM by 

applying the allometric equation. For the lower canopy height and DBH measurements were obtained from the 
TLS point cloud data. By applying the allometric equation a modelled AGB was obtained. Accuracy of the 
modelled AGB was validated by using the field measured DBH and TLS measured height by calculating the 
AGB using the allometric equation. Total modelled AGB from both upper and lower canopies were calculated 

and validated using the total AGB calculated from field measurements. The graphical presentation of the 
methods is shown in Figure 3. 

2.5.1 Upper Canopy 

Airborne LiDAR data processing 
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Figure 3. Methodology flow diagram. 

Point cloud data obtained from airborne LiDAR was processed using LAS tools. Canopy height model (CHM) was 
generated by adopting the method of Khosravipour, et al., (2015) through the use of the pit free algorithm to create 
a pit free raster CHM. This is a direct processing of point cloud data into raster format. Using LAS tool 

lasground .las files were classified into ground and non-ground points. Height was normalized using the lasheight 
tool by replacing the elevation of each point with its height above the ground. Using the las2dem tool partial 
CHMs were generated then the pit free algorithm was used to convert the partial CHMs into a pit free raster CHM.  

To note pit free CHM is a new method of creating CHMs (Ben-Arie, et al., 2009) and detailed comparison of the 
method had proven that it can provide better height metrics (Khosravipour, et al., 2015). Moreover, in this study 
adapting the method of generating better height metrics was essential because of the reliability of the primary 
ground height data that was acquired. 

Orthophoto data processing 

Tree crown segmentation utilizes the Orthophoto and the generated CHM. The two datasets were co-registered 
prior to its combination in eCognition. The two data sets were layer stacked in eCognition to fuse the two images. 
Multi-resolution segmentation process was applied to identify features using the scale and homogeneity parameters 
obtained from the spectral reflectance values from the Orthophoto and the elevation from the CHM (Suárez, et al., 
2005). In this study the method has been adopted for this has been implemented for forest biomass estimation (Van 
Aardt et al., 2004). To determine the best fit scale, a scale of 10 was selected using the estimation scale parameter 
(ESP) tool (Drǎgut et al., 2010). In  the segmentation process the 10 scale parameter was used and for shape and 
compactness 0.8 and 0.6 values were used respectively.   

Manual Identification and Delineation of Trees 

To validate the CPA segmentation process manual tree identification and identification was done. This is a 
challenging task especially in thick canopied tropical forest. Handheld GPS system could not function properly 
under this environmental condition. The established plots were then reconstructed in the generated CHM and 
Orthophoto.  Based on the acquired center plot location, and geotagged tree points near the center plot, individual 
trees were identified first using the images derived from the TLS. Its relative location was identified in RiSCAN 
software. Based on that information location of the tree was identified into the reconstructed plots in the 
Orthophoto using plot bearing as a guide to locate the tree. Using the height information of the tree from the TLS 
its location was further verified using the generated CHM. Tree crown delineation per plot was subsequently done 
using manually identified trees in the Orthophoto. 

Segmentation Validation 

Delineated tree crowns were assessed for segmentation accuracy and model validation. Tree crown segmentation 
accuracy employed visual and geometric techniques. Visual accuracy technique (Möller et al., 2007) assess the 
accuracy of the segmentation based on the relative area in reference to the manually digitized polygons. Geometric 
segmentation accuracy assess the extent  of the segmented output with reference to a defined training set (Clinton, 
et al., 2010). The quality of the segmented output is defined in terms of over and under segmentation. Over 
segmentation and under segmentation as explained by Clinton, et al., (2010) based on Equations 1 and 2.  
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…………… Equation 2 

…………… Equation 1 

The goodness of fit is explained in terms of the distance index (D) which is the combination of over and under 
segmentation. The D value range is from 0 to 1, where 0 is a perfect match between the reference polygon and the 
segmented object and 1 is the minimum mismatch. The goodness of fit is calculated using Equation 3. 

…………… Equation 3 

2.5.2 Lower Canopy 

Terrestrial Laser Data Processing 

The acquired point cloud data from the field was processed using RiSCANPRO software (RIEGL, 2015). It has a 
built in project data structure where acquired data is organized and stored. Using the software point cloud data was 
coarse registered by defining the tie points from the acquired scan position in two dimensional mode. The center 
scan position was used as the reference data set and the outer scan positions are the data set to be registered. The 
quality of the co-registered scans was improved through the application of multistation adjustment algorithm. This 
iteratively adjust the position and orientation of the scan position until the error is below the user defined threshold. 

Plot and Individual Tree Extraction 

The scanned point cloud data covers a large area and to separate the circular plots it was filtered. Plot measurement 
was based on recorded field data taking into consideration the slope correction of each plot. Area of interest was 
defined based on the points that were within plot distance using the range function of RiSCAN PRO. Individual 
trees were extracted from the plots through the selection of point clouds that resemble tree shape. Noise were 
manually removed. Recognized trees were sliced and saved as poly data for further tree parameter assessment. 

Tree Height Measurement 

Extracted tree poly data was retrieved and each individual tree was manually measured using the measuring tool of 
the software. The lowest (ground) and highest (tree top) points of each tree were located. The measurement tool 
read the x, y, & z values of measured points and the height was measured along the vertical axis between the 
lowest and highest points (Figure 4). The obtained height measurement was stored in a database format using 
Excel. 

 

Figure 4. Tree height measurement of extracted trees. 

DBH Measurement 

DBH of the individual tree was determined at 1.3 m from the lowest point of the tree and the width of the stem of 

the tree of this height was measured on a point to point basis. The measurement tool then reads the x, y, & z values 

of the measured points and the width measurement is taken along the horizontal distance of the stem (Figure 5). 

2.5.3 AGB and Carbon Stock Estimation 

Using allometric equation is a common method of estimating forest biomass that can be used in large forest areas 
through non-destructive methods (Ketterings et al., 2001). The equation relates to tree structural parameters that 
can be repeatedly measured on the ground and can be used to estimate AGB. Selection of the appropriate 
allometric equation is essential for this determines the preciseness of AGB estimates. For a tropical forest like 
AHFR that stores highly diverse species of trees, local or geographical allometric equations may render inadequate 
estimates (Gibbs et al., 2007). This study adopted the generic equation (Equation 4) developed by Chave et al., 
(2014) because the equation is established based on a larger number of trees. Using the equation have the potential 
to increase the precision of AGB estimates. Precise estimation of AGB as a consequence will also provide precise 
carbon stock be estimation by multiplying the 50% factor (Drake et al., 2003)  
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Figure 5. DBH measurement of extracted trees. 

Where, 

AGB: Above ground biomass (Kg) 

ρ: specific wood density  

D: diameter at breast height 

H: Height 

……… Equation 4 

2.6 Regression Analysis and Model Validation 

Regression analysis is an established method for modelling the relationship between remotely sensed data and field 
measurements (Popescu, 2007; Lim et al., 2003). The method quantifies the relationship between the response 
variable and the explanatory variable. This type of statistical analysis is used in this study to establish relationships 
among the derived forestry parameters to account for the total AGB/carbon of the forest.  To assess the upper 

canopy layer of the forest, multiple linear regression was used to model the relationship between the field 
measured DBH and the airborne LiDAR derived height and CPA derived from the Orthophoto to obtain a 
modelled DBH. While to assess the relationship between the modelled AGB and field measured AGB a linear 
regression was implemented. In assessing the AGB of the lower canopy layer of the forest, linear regression was 
used to establish the relationship between the modelled AGB using the TLS measured DBH and height and the 

field measured AGB using the field measured DBH and TLS height. Then to assess the relationship between the 
modelled total AGB and the total field AGB linear regression was used. To assess the performance of all modelled 
parameters the RMSE was calculated using the general equation (Equation 5).   

……… Equation 5 

Where, 

P: Predicted              n: number of observations 

O: Observed 

3. Results 

3.1 Field Data 

Tree parameters namely DBH and crown diameter of the individual sampled trees were measured from the 16 field 

plots. The descriptive statistics of the sampled trees are shown in Table 1. The test for the normality of the field 
measured DBH and crown is shown in Table 2. Distribution and QQ plots of field DBH and tree crowns is shown 
in Figure in 6. 

Statistic Mean Minimum Standard 
Deviation 

Number of trees 

DBH (cm) 23.47 10 14.29 428 

Crown Diameter (cm) 5.65 2.17 2.14 232 

  Kolmogorov-
Smirmova 

    Shapiro-Wilk     

  Statistic df Sig. Statistic df Sig. 

DBH 0.173 0.428 0.000 0.789 0.428 0.000 

Crown 0.076 232 0.002 0.956 232 0.000 

Table 1. Descriptive statistics of the sampled trees. 

Table 2. Normality test of field measured DBH and crown. 
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                   Figure 6. Distribution and QQ plots of field DBH and tree crowns. 

3.2 Pit-free CHM from Airborne LiDAR Data 

The CHM for the upper canopy layer of the forest was generated by classifying point cloud data into ground and 
non-ground points. The height was then normalized and partial CHMs were created (Figure 7). CHMs with pits 
have significant effects to height measurements. Application of the pit-free algorithm was essential to produce pit 
free CHMs (Figure 8).  

Figure 7. Two-Dimensional representation  
of partial CHMs with pits.  

Figure 8. Pit-free CHMs  

3.3 CPA segmentation accuracy assessment 

Accuracy of segmented tree crowns was assessed based on D measures and 1:1 spatial correspondence for the 208 
identified and manually delineated trees. The total 1:1 match is 160 out of the 208. This accounts to a 77% match.  
Over- and under segmentation at the scale of 10 is .09 and 0.03 respectively and D value of 0.25 (75%). This 
accounts to a total accuracy of 75% and a segmentation error of 25%. Table 3 show the accuracy assessment result. 

Parameter Total 
reference 
polygons 

Total 1:1 match Over 
segmentation 

Under 
segmentation 

D-value 

1:1 208 160       
Goodness of fit     0.09 0.03 0.25 
Total Accuracy   77%     75% 

Table 3. Segmentation accuracy assessment 

3.4 Registered Scans 

Registration of 4 TLS scans using the point cloud data were aligned to the scanned positions to obtain a three- 
dimensional perspective of the scanned scene Figure 9. Creating the three-dimensional scene allowed the 
subsequent steps of identifying individual trees, tree extraction and tree parameter measurements (DBH and  
Height.  Applying, this method and the subsequent multistation adjustment (MSA) obtained a standard deviation of  

0.01-0.0234 cm of the point cloud data. 

3.5 Individual Tree Detection 

Individual tree detection was done by identifying point clouds that fit the shape of an individual tree. Identification 
was done through the tagged numbers to the individual trees in the plot. The process is based on the assumption 
that point clouds tend to aggregate near the circular points that is distributed through the vertical axis of some 

height which is separated from the adjacent stem. Tagged individual trees that were visibly identified were 
recognized as trees. 

3.6 Individual Tree Extraction 

Trees that were individually detected were extracted manually in RiSCAN PRO and stored as individual polydata. 
Figure 10 shows sample of individual trees extracted trees from RiSCAN PRO. From the extracted trees individual 

tree parameters such as DBH and height were measured using the measure interface of RiScan PRO. The obtained 
parameters were subsequently used for AGB modelling and estimation. 
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Figure 9. Three dimensional scene  
after registering the point cloud data. 
 Figure 10. Sample of extracted trees.  

3.5 Plot selection for DBH and AGB analysis 

Plot selection is essential for this study since it is necessary that the plots contain trees that complement from both 
sensors. There were only 16 plots identified viable for subsequent model analysis and AGB estimation. Other plots 
were excluded because trees were not detected from the CHM derived from airborne LiDAR and CPA from the 
Orthophoto. Moreover, not all trees that were detected were also extracted from TLS scanned plots.  To estimate 
AGB on a plot basis it must have the complete number of trees per plot for precise AGB accounting. Table 4 show 
the number of trees per plot identified and extracted from the respective sensors.  

Table 4. Trees identified and extracted by the respective sensor. 

Plot No.  No. Trees 
Detected by 
Airborne 
LiDAR & 
Orthophoto  

Extracted 

trees 

obtained 

from TLS  

Total No. 

of Trees  
Plot No.  No. Trees 

Detected by 

Airborne 

LiDAR & 

Orthophoto  

Extracted 

trees 

obtained 

from TLS  

Total No. 

of Trees  

1 12 3 15 9 12 16 28 
2 13 10 23 18 10 25 35 
3 20 7 27 20 10 14 24 
4 13 11 24 21 13 30 43 
5 18 3 21 22 13 24 37 
6 16 8 24 24 11 15 26 
7 11 15 26 25 13 10 23 
8 11 14 25 26 12 15 27 

Sub-Total 114 71 185 Sub-Total 94 149 
243 

Total No. Trees Detected by Airborne LiDAR & 
Orthophoto 

 208         

Total Extracted trees obtained from TLS  220         
Total No. of Trees  428         

3.5 Upper Canopy AGB calculation 

3.5.1 CHM and CPA parameters 

To assess the AGB for the upper canopy layer, DBH must was modelled using multiple regression. The two main 
parameters were required to model the DBH of this layer namely height and CPA. The generated CHM from 
Airborne LiDAR and CPA from the segmented Orthophoto were used to obtain a modelled DBH. This was 
applied because DBH cannot be measured directly from the images both from Airborne LiDAR and Orthophoto. 
Table 5 show the average CPA and height per plot. Figure 11 show the distribution and QQ plots of CPA and 
height.  

Plot No. CPA Height Plot No. CPA Height 
1 5.83 20.53 9 7.38 17.68 

2 8.37 19.42 18 6.32 20.86 

3 5.83 20.53 20 7.17 23.28 

4 5.85 22.04 21 5.62 20.79 

5 6.45 21.79 22 7.29 24.06 

6 7.03 19.32 24 6.08 21.79 

7 7.62 17.34 25 5.98 23.07 

8 6.35 11.59 26 6.55 
21.24 

Table 5. Average CPA and height per plot. 
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Figure11. Distribution and QQ plots of CPA and height. 

3.5.2 DBH modelling using multiple regression analysis 

Height generated from CHM and CPA from the segmented Orthophoto were used as independent variable and 
field measured DBH as the dependent variable to obtain a modelled DBH using multiple regression. The overall 
relationship between the modelled DBH and field measured DBH for the 16 plots is shown in Figure 12.  

 

Figure12. Overall relationship between modelled and field DBH for the 16 plots. 

Table 6 show the average modelled DBH and the average field measured DBH per plot. Figure 13 show the 
distribution and QQ plots of field and modelled DBH. Table 7 show the probability and reliability of the 
modelled and field measured DBH for the 16 plots.  

Table 6. Average modelled and field DBH per plot. 

Plot 

No. 

Modelled 

DBH 
Field DBH Plot 

No. 

Modelled 

 DBH 

Field DBH 

1 23.91 23.92 9 29.70 29.92 

2 38.63 38.62 18 34.30 34.33 

3 29.28 29.30 20 38.00 38.00 

4 30.68 30.69 21 27.35 27.54 

5 30.67 30.67 22 27.77 27.77 

6 24.54 24.56 24 36.72 36.73 

7 20.18 20.18 25 27.70 27.85 

8 20.28 20.09 26 24.88 
24.33 

  Regression Statistics   

R Square Adjusted R2 RMSE 

0.90 0.89 
0.02 cm 

Regression probability and reliability 
 Coefficients P-value 

Significance F Intercept Modelled 

DBH 

Intercept Modelled 

DBH 

5.8E-105 -0.047 1.001 0.95 
5.8E-105 

Figure13. Distribution and QQ plots of field 
and modelled DBH 

Table 7.  Regression statistics, probability and reliability of the modelled and field measured DBH for the 
16 plots. 
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The regression statistics of modelled DBH per plot is shown in Table 8. The regression probability and reliability 
of modelled DBH per plot is shown in Table 9  

Plot No. R 

Square 
Adjusted 

 R Square 

RMSE 

(cm) 
Plot No. R 

Square 
Adjusted 

 R Square 

RMSE 

(cm) 

1 0.93 0.91 3.13 9 0.91 0.89 4.52 
2 0.97 0.96 6.82 18 0.95 0.94 4.76 
3 0.89 0.87 5.56 20 0.88 0.84 8.61 
4 0.78 0.74 5.97 21 0.86 0.83 4.80 
5 0.85 0.84 6.97 22 0.89 0.87 4.28 

6 0.75 0.71 5.08 24 0.76 0.70 8.31 
7 0.89 0.86 2.48 25 0.80 0.75 8.50 
8 0.79 0.74 4.76 26 0.81 0.77 

6.22 

Table 8.  Regression statistics of modelled DBH per plot. 

Table 9.  Regression statistics, probability and reliability of modelled DBH per plot. 
  

Coefficients P-value 

Plot 

Number 

Significance 

F 

Intercept CPA Airborne 

LiDAR 

Intercept CPA Airborne 

LiDAR 

1 0.00054 -23.8318 3.44213 1.20555 0.02522 0.00045 0.00712 

2 0.00000 -35.1645 -4.33123 5.66599 0.00057 0.00003 0.00000 

3 0.00000 6.4450 -3.84735 2.20564 0.34477 0.00000 0.00000 

4 0.00052 -36.2943 2.11197 2.47879 0.01150 0.00249 0.00042 

5 0.00000 -70.6549 3.25972 3.68582 0.00001 0.00052 0.00000 

6 0.00012 8.6789 -1.84090 1.49180 0.23153 0.00119 0.00039 

7 0.00015 -3.2429 -0.93731 1.76242 0.43788 0.00322 0.00006 

8 0.00194 5.3558 -2.04895 2.39355 0.42917 0.00452 0.00179 

9 0.00002 9.3777 -2.53780 2.22004 0.15895 0.00041 0.00002 

18 0.00002 -57.2368 3.46529 3.33836 0.00036 0.00030 0.00012 

20 0.00069 -33.2824 -2.29377 3.76809 0.05461 0.01997 0.00033 

21 0.00006 -32.9637 2.55242 2.21920 0.00197 0.00901 0.00008 

22 0.00002 -53.4245 1.62452 2.88215 0.00016 0.00144 0.00001 

24 0.00343 -35.7297 5.83201 1.69921 0.06259 0.00198 0.02333 

25 0.00036 -28.6656 0.20537 2.39613 0.01390 0.85124 0.00021 

26 0.00054 -23.8318 3.44213 1.20555 0.02522 0.00045 0.00712 

3.5.3 Modelled AGB calculation and validation 

AGB model for the upper canopy layer was calculated by applying the allometric equation by Chave et al., (2014). 
The values used in the equation are the modelled DBH and the height from the generated CHM. The modelled 
ABG was validated by applying the same allometric equation to the field measured DBH and height from the 
generated CHM. The modelled ABG was validated by applying the same allometric equation to the field measured 

DBH and height from CHM. Regression analysis between the modelled and field AGB was then conducted. Figure 
13 show the overall relationship between the modelled and the field AGB for the 16 plots. Table 10 show the 
average AGB for the 16 plots.  

Figure 13. Overall relationship between the modelled and  
field measured AGB of the 16 upper canopy layer plots. 
 

The regression statistics, probability and reliability of the modelled and field measured AGB for the 16 plots is 
shown in Table 11. The regression statistics of modelled and field AGB per plot is shown in Table 12.  The 
regression probability and reliability of modelled AGB per plot is shown in Table 13. 
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Table 13. Regression probability and reliability of modelled AGB per plot. 

Table 10. Average AGB for the 16 upper canopy plots. 

Regression probability and reliability 
 Coefficients P-value 

Significance F Intercept Modelled 

DBH 

Intercept Modelled 

DBH 

1.8E-170 -3.88 1.03 0.86 
1.8E-170 

  Regression Statistics   

R Square Adjusted R2 RMSE 

0.98 0.98 
69.44 Kg 

Table 11.  Regression statistics, probability and reliability of the modelled and field measured AGB for the 16 plots. 

Plot 

No. 

Modelled 

AGB 

(kg/plot) 

Field 

AGB 

(kg/ plot) 

R 2 RMSE 

kg 

1 4808 3991 0.95 68.67 

2 30214 20827 0.99 171.90 

3 15045 15348 0.95 200.20 

4 9627 9855 0.75 309.73 

5 15822 16396 0.84 451.30 

6 6876 7075 0.77 175.49 

7 2883 2920 0.91 68.95 

8 2153 2192 0.94 65.21 

 Plot 

Number 

 

  

Modelled 

AGB 

 (kg/ plot) 

Field 

AGB 

(kg/plot) 

Plot 

Number 

Modelled 

AGB 

(kg/plot) 

Field AGB 

(kg/plot) 

1 401 333 9 647 647 

2 2324 2371 18 1055 1061 

3 752 767 20 1495 1513 

4 741 758 21 611 795 

5 879 911 22 710 720 

6 430 430 24 1027 1054 

7 262 262 25 853 922 

8 196 199 26 531 533 

Plot 

No. 

Modelled 

AGB 

(kg/plot) 

Field AGB 

(kg/ plot) 

R 2 RMSE 

kg 

9 7767 7928 0.95 147.07 

18 10553 10609 0.95 249.05 

20 14955 15131 0.96 425.53 

21 7944 10332 0.93 221.29 

22 9235 9365 0.88 250.34 

24 11295 11597 0.72 454.81 

25 11084 11987 0.95 334.71 

26 6372 6401 0.74 366.95 

Table 12. Regression statistics of modelled and field AGB per plot. 

  Coefficients P-value 
Plot 

No. 
Significance F Intercept Modelled 

AGB 
Intercept Modelle

d AGB 
1 0.00000 30.91941 0.75296 0.31536 0.00000 

2 0.00000 -55.00008 1.04394 0.30578 0.00000 

3 0.00000 7.64259 1.00996 0.90065 0.00000 

4 0.00012 -14.63952 1.04337 0.92789 0.00012 

5 0.00000 -48.57211 1.09156 0.74684 0.00000 

6 0.00001 4.95256 1.01741 0.94946 0.00001 

7 0.00000 -14.23454 1.06701 0.69263 0.00000 

8 0.00000 -12.80616 1.08357 0.64020 0.00000 

9 0.00000 85.98751 0.88797 0.17574 0.00000 

18 0.00000 87.24263 0.92265 0.43312 0.00000 

20 0.00000 124.03345 0.92885 0.47356 0.00000 

21 0.00000 23.82234 1.26157 0.78844 0.00000 

22 0.00000 32.66846 0.96814 0.75245 0.00000 

24 0.00081 -84.96709 1.10942 0.75905 0.00081 

25 0.00000 -135.65397 1.24053 0.26571 0.00000 

26 0.00032 -78.75753 1.15282 0.62391 
0.00032 
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3.6 Lower Canopy AGB calculation 

3.6.4 TLS acquired height and DBH and field measured DBH  

Height and DBH are parameters measured directly from the extracted trees from the TLS. These parameters were 
used to model the AGB of trees in the lower canopy. The mean height and DBH from the extracted trees per plot 
as well as the field measured DBH are shown in Table 14. 

Plot No. TLS Height

(m) 
TLS 

DBH

(cm) 

Field DBH

(cm) 
Plot  

No. 
TLS Height

(m) 
TLS DBH

(cm) 
Field 

DBH

(cm) 

1 9.87 16.53 16.70 18 14.69 18.84 19.00 

2 13.75 13.26 14.00 20 14.65 19.43 19.43 

3 14.60 19.39 22.00 21 15.55 17.87 17.80 

4 15.36 20.15 20.18 22 15.58 16.79 16.79 

5 14.33 22.47 23.67 24 15.53 18.52 19.20 

6 14.80 12.64 12.75 25 16.26 16.85 17.00 

7 15.15 22.35 22.33 26 13.86 17.37 17.40 

8 8.64 19.89 20.00 18 14.69 18.84 19.00 

9 12.95 16.79 16.81 20 14.65 19.43 
19.43 

Figure 14. Distribution and QQ plot of TLS measured height and DBH and field DBH. 

Table 14. Mean height and DBH from trees extracted from TLS and mean field measured DBH.  

The QQ plot distribution of the three parameters is shown in Figure 14.Table 15 show the regression statistics 
probability and reliability of the modelled and field measured DBH. Figure 15 show the graphical relationship 
between TLS and field DBH.  

 Regression 

Statistics 

  

R Square RMSE 

099 
1.03 cm 

Regression probability and reliability 
 Coefficients P-value 

Significance 

F 

Intercept Modelle

d DBH 

Intercept Modelled 

DBH 

3.9E-209 0.111 1.07 0.472 
3.9E-209 

Table 15. Regression statistics, probability and reliability of the modelled and field measured DBH. 

3.6.5 AGB calculation and validation 

The same allometric equation by Chave et al., (2014) was applied to calculate the AGB for the lower canopy. 
Calculating for the AGB used the TLS measured DBH and height parameters. The model was validated using the 
field DBH and TLS height. Regression analysis between the TLS modelled and field measured AGB was then 
conducted. Figure 16 show the overall relationship of the modelled and field AGB. Table 16 show the average 

AGB for the lower canopy plots. Table 17 show the regression statistics of the average calculated AGB for the 
lower canopy per plot. Plot level regression statistics of the modelled and field AGB is shown in Table 18.  

 

Figure 16.  Overall relationship between the modelled and  
field AGB of the 16 lower canopy plots.  
 

Figure 15. Relationship between TLS and field measured DBH. 
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Table 19. Summation of modelled AGB from upper and lower  canopies. 

Table 17. Regression statistics, probability and reliability of the modelled and field measured AGB 
for the 16 lower canopy plots. 

Plot. No. Modelled 
AGB (KG/

plot) 

Field AGB 
(KG/plot) 

Plot. No. Modelled AGB 
(KG/plot) 

Field AGB 
(KG/plot) 

1 96.04 97.84 9 148.48 149.28 

2 83.11 96.59 18 242.40 243.10 

3 209.85 273.94 20 251.31 251.31 

4 242.40 243.87 21 242.22 291.59 

5 364.46 417.11 22 195.13 193.31 

6 100.01 102.26 24 307.36 307.36 

7 346.11 345.89 25 208.14 206.91 

8 135.30 136.25 26 171.90 173.03 

Table 16. Average AGB for the 16 lower canopy plots.  

 Regression 

Statistics 

  

R Square RMSE 

0.99 
19.23 kg 

Regression probability and reliability 
 Coefficients P-value 

Significance 

F 

Intercept Modelle

d DBH 

Intercept Modelled 

DBH 

1.5E-205 -0.55 1.05 0.86 
1.5E-205 

Plot 
No. AGB TLS AGB Field R 2 

RMS
E (Kg) 

 (kg /plot) (kg /plot)   
1 288 294 1 2 

2 831 966 0.77 33.21 
3 1469 1918 0.99 33.27 

4 2666 2683 0.99 3.45 

5 1093 1251 0.99 7.29 

6 800 818 0.99 1.59 

7 5192 5188 0.99 7.15 
8 1894 1907 0.99 2.91 

Plot 
No. AGB TLS AGB Field R 2 

RMSE 
(Kg) 

 (kg /plot) (kg /plot)   

9 2376 2389 0.99 5.24 
18 6060 6075 0.99 12.04 
20 3518 3518 1 0 
21 7267 8748 0.99 13.41 
22 4683 4639 0.99 14.79 
24 1640 4610 1 0 
25 2081 2069 0.99 17.11 
26 2579 2595 0.98 25.12 

Table 18. Plot level regression statistics of the modelled and field AGB 

3.6.6 Summation of modelled AGB from upper and lower canopies 

The overall modelled AGB was quantified by combining the validated values from both upper and lower 
canopies.  The combined values are presented in Table 19. 

Plot No. AGB 

(Upper) 

(kg/ plot) 

AGB 

(Lower) 

(kg/ plot) 

Total  

Modelled 

AGB 

Plot No. AGB 

(Upper) 

(kg/plot) 

AGB 

(Lower) 

(kg/plot) 

Total  

Modelled 

AGB 
1 4808 288 5096 9 7767 2376 10143 

2 30214 831 31045 18 10553 6060 16613 

3 15045 1469 16514 20 14955 3518 18473 

4 9627 2666 12293 21 7944 7267 15211 

5 15822 1093 16915 22 9235 4683 13918 

6 6876 800 7676 24 11295 1640 12935 

7 2883 5192 8075 25 11084 2081 13165 

8 2153 1894 4047 26 6372 2579 
8951 

3.6.7 Summation of field AGB from upper and lower canopies 

Likewise the overall field AGB from both upper and lower canopies were also combined. The combined values 
are presented in Table 20. 

3.6.8 Accuracy assessment of the total modelled AGB 

Accuracy of the combined modelled AGB was assessed by calculating the R2 and RMSE. The graphical 
presentation of the accuracy of the combined upper and lower AGB is presented in Figure 16. The tabulated 
accuracy result for the respective upper and lower canopies are presented in Table 21. The accuracy of the 
combined modelled AGB is presented in Table 22.  
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Figure 16. Accuracy of the combined upper and lower  
canopy modelled AGB. 

Table 20. Summation of field AGB from upper and lower canopies. 

Plot 

No. 
AGB 

 (Upper) 

AGB 

(Lower) 

Total  

Field  

AGB 

Plot 

No. 
AGB 

 (Upper) 

(kg /plot) 

AGB Field 

(Lower) 

(kg /plot) 

Total 

Field  AGB 
 (kg /plot)  (kg /plot) 

1 3991 294 4285 9 7928 2389 10317 

2 20827 966 21793 18 10609 6075 16684 

3 15348 1918 17266 20 15131 3518 18649 

4 9855 2683 12538 21 10332 8748 19080 

5 16396 1251 17647 22 9365 4639 14004 

6 7075 818 7893 24 11597 4610 16207 

7 2920 5188 8108 25 11987 2069 14056 

8 2192 1907 4099 26 6401 2595 
8996 

4 Discussion 

4.1 Data Distribution 

The normality distribution of the field measured and sensor derived parameters were assessed because these 
parameters were needed for the subsequent regression analysis to derive AGB and carbon estimation. The 
distribution of the field measured DBH as showed in the result indicated a positive distribution to the right as well 
as the measured tree crown.  

 

 

Plot 

No. 

Total  

Modelled  

AGB (Kg/

plot) 

R2 

Upper 

Canopy 

R2 

Lower 

Canopy 

RMSE  

Upper 

Canopy 

(Kg) 

RMSE  

Lower 

Canopy 

(Kg) 

1 5096 0.95 1 68.67 2.00 

2 31045 0.99 0.77 171.90 33.21 

3 16514 0.95 0.99 200.20 33.27 

4 12293 0.75 0.99 309.73 3.45 

5 16915 0.84 0.99 451.30 7.29 

6 7676 0.77 0.99 175.49 1.59 

7 8075 0.91 0.99 68.95 7.15 

8 4047 0.94 0.99 65.21 2.91 

Plot 

No. 

Total  

Modelled  

AGB 

(Kg/plot) 

R2 

Upper 

Canopy 

R2 

Lower 

Canopy 

RMSE  

Upper 

Canopy 

(Kg) 

RMSE  

Lower 

Canopy 

(Kg) 

9 10143 0.95 0.99 147.07 5.24 

18 16613 0.95 0.99 249.05 12.04 

20 18473 0.96 1 425.53 0.00 

21 15211 0.93 0.99 221.29 13.41 

22 13918 0.88 0.99 250.34 14.79 

24 12935 0.72 1 454.81 0.00 

25 13165 0.95 0.99 334.71 17.11 

26 8951 0.74 0.98 366.95 
25.12 

Table 21.  Accuracy of the modelled upper and lower AGB. 

Plot no Total Modelled  

AGB (Kg/plot) 

R2 RMSE 

Kg 

1 5096.03 0.96 60.67 

2 31045.28 1.00 130.39 

3 12293.66 0.95 175.96 

4 16915.45 0.84 219.15 

5 7676.42 0.85 415.12 

6 8074.89 0.84 140.02 

7 4046.81 0.98 43.36 

8 10142.22 0.96 41.87 

Plot no Total Modelled  

AGB (Kg/plot) 

R2 RMSE 

Kg 

9 10142.22 0.96 96.94 

18 16613.15 0.97 126.53 

20 18473.23 0.97 261.82 

21 15211.01 0.97 117.41 

22 13917.83 0.93 141.36 

24 15905.61 0.88 280.63 

25 13165.34 0.96 250.91 

26 8950.68 0.79 234.30 

Table 21.  Accuracy of the combined modelled AGB. 
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For the derived image parameter the distribution was symmetrical for the CHM and positively skewed to the right 
for the CPA. This symmetrical distribution of the CHM could be attributed to the identified trees from the image 
that are of taller heights except from the reforested area where trees of lower heights could be detected. In 
addition, taller trees have a greater chance of detection in airborne LiDAR because it has been proven to provide 
highly accurate height measurements due to higher point cloud densities near the sensor (Van Leeuwen et al., 
2011). For the CPA it assumes a similar distribution pattern to the field measured crown which is positively 
skewed. This also implies that it has a similar distribution as the field measured DBH. As the result of  King et al., 
(2005) who showed  these parameters having a direct relationship therefore the CPA has shown similar variability 
as the field measured crown and DBH. 

 To test validity of the modelled and field DBH for subsequent AGB modelling the distribution was also tested. 
The distribution showed that it is positively skewed due to the one measurement which was extremely high. In this 
case it was included because the study is accounting for the accurate biomass on a plot basis. Excluding the tree 
would not reflect the substantial amount of biomass it has stored. 

Testing the normality of TLS and field DBH distribution showed a positive skewness. This is because trees 
extracted from TLS reflect the same trees measured in the field. Thus, similarity in the pattern of distribution can 
be observed because trees above 10cm DBH were the ones measured. TLS height showed positive skewness 
because the trees extracted from the sensor are mostly of lower heights except for two trees which is way above 
the mean. As mentioned earlier for DBH extreme values were not excluded because estimation was based per plot 
and the substantial biomass stored of these trees must be accounted for.   

4.2 Upper Canopy Layer 

Calculating for the AGB of the upper canopy layer requires the generation of CHM from airborne  LiDAR and 
CPA from the Orthophoto to produce a modelled DBH. DBH is one of the primary parameter required to calculate 
the AGB. Further, the accuracy of the modelled DBH is validated by the field measured DBH and the accuracy of 
the modelled AGB was validated by the field AGB. The succeeding sections discusses the obtained results. 

Pit free CHM 

Field measured height was not used due to data reliability. The presence of thick undergrowth causes occlusion 
upon tree height measurement. The occlusions in turn causes error readings using the instrument. Moreover, due 
to intermingling thick tree canopies measuring height underneath the forest is a challenge. Highest point of the 
tree is difficult to identify. Determining the highest point cause some biases for it is dependent on the handler of 
the instrument. Similar findings were observed in the studies by Andersen et al., (2006), O’Beirne, (2012)and 
Rönnholm et al., (2004).  

Airborne LiDAR then was the only source for height data for estimating upper canopy AGB.  Studies done by 
Lefsky et al., (2002) proved that LiDAR sensors can provide accurate and non-asymptotic estimates of various 
forest indices. As reviewed by Wulder et al., (2012) LiDAR sampling for large area forest characterization 
concluded that LiDAR can be treated as an independent measure to generate estimates of forest attributes for 
scientific studies. Thus, CHM was generated from 3D point cloud data from airborne LiDAR as done by Chen et 
al., (2005). However, the presence of “data pits” (irregularities in the surface canopy) reduced tree detection 
accuracy and subsequent biophysical measurements as observed by Ben-Arie et al., (2009). Producing pit free 
CHM  was applied  based on the study of Khosravipour et al., (2014) for it has been tested to produce better 
height measurements. 

Segmentation accuracy 

Application of multi-resolution segmentation was assessed in two ways. Measurement based on the segmented 
and referenced object was considered 1:1 if there was a 50% overlap  (Zhan et al., 2005). The result of this study 
showed an accuracy of 77%. The results are comparable to studies done by Karna et al., (2013); Asmare, (2013) 
and Wang et al., (2004) that applied similar methods but of different type of forests. Further, over and under 
segmentation at the scale of 10 is 0.09 and 0.03 respectively with a D value of 0.25 (75%). Using fine scale value 
of 10 is considered most suitable to segment small objects like trees (Benz et al., 2004). The over and under 
segmentation values obtained can be considered the optimum fit for the upper canopy crowns. Higher over 
segmentation value compared to under segmentation indicate that automated segments exceed the area of the 
referenced polygons. This outcome is normal especially for complex and natural forests due to high variability in 
crown shape, multi-scale branching and tree clustering resulting to over segmentation  (Jing et al., 2012).  

4.3 Accuracy of the modelled DBH 

The obtained R2 value of the DBH for the 16 plots is 0.90 and RMSE of 0.02 cm. This indicate a strong 
relationship between height and CPA to model DBH as studied by Popescu, (2007). However, as compared to the 
result of  Popescu, (2007) that obtained an R2 of  0.87 and RMSE of 4.9 cm the values for this study obtained 
higher values. Higher values can be attributed through the direct processing of the airborne LiDAR data to derive 
height. The characteristic bias of  using this method is measuring stand height towards the upper layers because 
the density of the point cloud is dependent on the last returns (Van Leeuwen et al., 2011).  
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Further, Maltamo et al., (2004) proved that using airborne LiDAR to obtain height revealed R2 values ranging from 
83 to 98%. For CPA segmentation using high resolution imagery yield better information for the upper canopy. 
Hirata et al., (2012) pointed out the impossibility to detect the middle and lower layers of a multi-layered forest. 
Related findings by Hou et al., (2011)  for tropical forest application revealed that optical sensors can record mainly 
the tree crown surface while the understory will remain undetected. 

4.4 Accuracy of the modelled AGB 

AGB calculation for this study adopted the generic allometric equation of Chave et al., (2014). To calculate for 

AGB, height and DBH were the parameters used. LiDAR derived height is the only parameter used for all the 

calculations from AGB modelling and validation. This is due to reliability issues of the field measured height as 

previously discussed. Moreover, the accuracy of airborne LiDAR has been extensively studied (Lefsky et al., 2002; 

Popescu & Wynne, 2004) and proven to provide superior results for tropical forests (Hou et al., 2011; Tokola & 

Hou, 2012). It is the contention of this study that it is inappropriate to use data of low reliability for comparative 

purposes. Thus, it is not logical to compare data of known low reliability to the data which is proven to provide 

accurate results. 

The calculated R2 and RMSE for the 16 plots is 0.98 and 69.44 Kg respectively. To determine if the results are 
reasonable values it was compared to some related studies. Relevant studies that specifically deal with upper 
canopy estimation when the research was conducted was not found. Thus, it was compared with studies that 
estimate the overall estimation of specific area of the forest. It is relatively higher compared to the obtained values 
of Ediriweera et al., (2014) who obtained an  R2 of 0.83 for estimating biomass for subtropical and eucalypts forest. 
The result however is more comparable to the study of Karna et al., (2015) for reforested tropical forest in Nepal 
that obtained R2 estimates ranging from 78-94%  AGB. The high values obtained can be an indicator that the use of 
airborne LiDAR data as the standard height in combination with a high resolution imagery can produce robust 
results. This signifies the contention of Van Leeuwen et al., (2011) using LiDAR derived height can provide 
accurate results for its strength is towards the upper layers of the forest. Moreover, as pointed out by Hirata et al., 
(2012) high resolution imagery is well suited for measurement of upper crowns. In the overall assessment of AGB 
generally high R2 values and low RMSE indicates good fit between the developed model and the sample plot (Lu, 
2006). 

4.5 Lower Canopy Layer 

To obtain the overall biomass estimate of this multi layered forest it must be complemented with the measurements 
derived from the lower canopy. Using high resolution imagery is not possible because the middle and lower layers 
will not be observed (Hirata et al., 2012). As earlier discussed the bias of airborne laser signals is towards the upper 
layers and it becomes less towards the lower layers (Van Leeuwen et al., 2011). Thus, the use of TLS is applied to 
measure the structural parameters of the lower canopy. The derived parameters were then used to calculate for the 
lower canopy AGB.  

Tree extraction  

Multiple scanning technique was used to obtain full surface coverage of the tree. Registering the scanned positions 
aligned the scans to create a 3D perspective of the scene (Huang et al., 2010; Hopkinson, et al., 2004). This method 
further provide better scenes from the merged point cloud that can facilitate tree extraction (Liang, 2013 and 
Kankare et al., 2013).  

Structural parameter measurement 

Tree height is one of the main parameter measured from TLS to calculate the AGB for the lower canopy. Using the 
instrument is suited for this part of the study for its strength is towards the lower part of the canopy structure. Point 
cloud density increases as it becomes nearer to the sensor (Maas et al., 2008). In this case trees of lower height can 
be easily detected by the sensor. To note the measured height obtained is also not compared with field measured 
height. This is because studies on the use of TLS in forestry applications emphasized its potential use to substitute 
conventional field inventory (Lovell et al,. 2003; Bienert, et al., 2006 ; Lindberg, et al., 2012). Accuracy of the 
instrument could reach as high as 0.976 for correlations  compared to manual measurements as studied by Rosell et 
al., (2009) or R2 of  0.99 for stand parameter (Strahler et al., 2008). 

Another parameter measured from TLS for AGB calculation is DBH. This was compared to the field measured 
DBH. The correlation result between the TLS and field measured DBH for this study showed an R2 value of 0.99 
and an RMSE of 1.03 cm. The RMSE result is slightly higher compared  to the obtained values of Bienert et al., 
(2006) and Kankare et al., (2013) who obtained an  RMSE of 1.5 cm and 1.48 cm respectively. This suggest that 
the obtained values of the two parameters have the potential to provide robust values for the estimation of the AGB.  

AGB Accuracy 

The same allometric equation by Chave et al., (2014) was used to estimate the lower canopy AGB.  The calculated 
R2 and RMSE for the 16 plots is 0.99 and 19.23 Kg respectively. The obtained R2 value is higher and RMSE is lower 
compared to the study of Prasad, (2015) with an R2  of 0.93 and RMSE  of 42.4. It is also consistently higher 
compared to the study done by Kankare et al., (2013) that obtained an R2 of 0.90 and 0.91 and RMSE of  22.12 kg 
and 26 kg respectively for Scots pine and Norway spruce.  
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The higher values can be attributed to the tested trees that come from the lower canopy only.  For the previous 
studies it was applied to trees of varying heights. As indicated from the study of Prasad, (2015) high RMSE values 
indicate higher variability of measured tree height because most likely in their study both upper  and lower 
canopies were assessed. 

Accuracy of the combined modelled AGB 

The combined AGB from the upper and lower canopies provided an overall estimate of the forest AGB. The 
obtained RMSEs for both canopy layers exhibited reasonable values. Calculating RMSEs indicate unbiased errors 
and follow a normal distribution (Chai and Draxler, 2014). Further, if there are more samples (eg. ≥100) 
reconstructing the error distribution using RMSE is more reliable. To support a very strong reliability of the 
modelled outcome more than 200 tree samples were used from each canopy layer. AGB values from the upper and 
lower canopy were combined as well as the R2 and RMSE values. The obtained average R2 and RMSE is 0.98 and 
188.35 Kg respectively.  

5. Conclusion 

This study proposed an approach of assessing the AGB/carbon of a vertically complex structured tropical rain 
forest to obtain better accuracy. A complementary method of utilizing the strengths of airborne LiDAR and 
terrestrial laser scanning system is tested if this can provide  accurate estimates of AGB/carbon of the different 
canopy layers of the forest. Estimating the AGB of the upper canopy layer made use of airborne LiDAR derived 
height and CPA from Orthophoto to derive a modelled of DBH through multiple regression. The achieved R2 
value of the modelled DBH for the 16 plots is 0.90 and RMSE of 0.02 cm. The modelled DBH together with 
LiDAR derived height was subsequently applied to the generic allometric equation to calculate for the modelled 
AGB and validated using the field measured DBH and LiDAR derived height. The result for the 16 plots achieved 
a model with an R2 of 0.98 and RMSE of 69.44 Kg. To complement the AGB from the upper canopy the AGB of 
the lower canopy of the forest was assessed through the use of the TLS extracted trees that were not identified in 
the upper canopy layer. Using the derived measured parameters from the extracted trees, AGB of the lower canopy 
was calculated. The correlation of the TLS and field measured DBH was established and revealed an R2 value of 
0.99 and RMSE of 1.03 cm. The TLS height and DBH was then applied to the allometric equation and was used to 
derive the AGB of the lower canopy. Then the model was validated using the field measured DBH and TLS 
derived height. The achieved result was a model with an R2 value of 0.99 and RMSE of 19.23 Kg for the 16 plots. 
The modelled AGB for the upper and lower canopies were then combined and further assessed for accuracy using 
R2 and RMSE. The R2 value achieved is 0.98 and the average RMSE is 188.35. The overall result showed some 
potential insights of utilizing remotely sensed data.   

This study has provided some insights of the potential application of  laser based and other remotely observed data 
to be used for rapid AGB/ carbon assessment in a tropical rain forest. In this study accuracy and reliability of the 
field height data was a challenging task to establish. Thus, obtaining the  reasonable values rely heavily on the 
implementation of modelling techniques to achieve better accuracy assessments. This however suggests the greater 
potential of  utilizing laser based height measurements for tropical rain forests. It is also recommended that further 
studies to be conducted will focus on the adoption of laser based methods of obtaining height and  collect DBH 
metrics in the field for this type of forest  to facilitate rapid AGB assessment.. 
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