
MAPPING OF FOREST COVER EXTENT AND CHANGE IN THE PHILIPPINES 

USING DECISION TREE CLASSIFICATION ON  

ALOS-1/2 PALSAR-1/2 MOSAIC DATA 
 

Mari Trix Estomata (1), Dr. Klaus Schmitt (1) 

 
1 

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, GIZ Office Manila 

9th Floor, Bank of Makati Building, Ayala Avenue Extension near corner Metropolitan Avenue 

1209 Makati City, Philippines 

Email: mari.estomata@giz.de; klaus.schmitt@giz.de 

 

 

KEY WORDS: L-Band SAR, REDD+, Unbiased Area Estimation, Olofsson, Multi-Temporal Speckle Filtering 

 

ABSTRACT: The forest cover and change mapping methodology developed for the project “Reducing emissions 

from deforestation and forest degradation” (REDD) required manual processing of radar data and thus was very time 

and labor intensive. This methodology was enhanced to include advances and updates in data pre-processing such as 

use of multi-temporal speckle filtering, newer and better classification techniques like the decision tree classifier and 

latest practices on accuracy assessment like unbiased area estimation. Pre-processing steps were automated through 

Python scripts to speed up data processing and make the methodology easily replicable at the provincial, regional 

and/or national scale. To further allow the approach to be reproducible, the freely available 25-meter slope-corrected 

mosaic radar data from Daichi-1/2, also known as Advanced Land Observation Satellite (ALOS-1/2), acquired using 

the Phased Array type L-band Synthetic Aperture Radar (PALSAR-1/2) was utilized. Forest cover maps of the three 

field sites for 2007, 2010 and 2015, as well as the forest cover change maps from 2010 to 2015 were produced using 

decision tree classifiers (DTC). The thresholds used for the decision tree to map forest extent in the field sites worked 

best for the radar images of the site in Mindanao (Davao Oriental), which achieved unbiased measures of accuracy 

using Olofsson’s accuracy assessment techniques of at least 89% for all classes mapped. The forest cover maps for the 

sites in Luzon (Albay) and Visayas (Eastern Samar) over-estimated the actual forest cover, although the unbiased area 

estimation allows uncertainties to fall below 10%. The change map for Mindanao (Davao Oriental) achieved unbiased 

accuracy measures of at least 91% for stable forests and non-forest classes, while the deforestation class only had an 

accuracy of 50%. Better thresholds have to be re-identified to improve forest cover change mapping. The improved 

methodology has produced accurate results for forest cover mapping and thus can be applied to other sites in the 

Philippines, but unbiased areas estimation would have to be used to achieve error-adjusted estimates. 
 
1. INTRODUCTION 

 

1.1 Project Purpose and Relevance 

 

The main purpose of the research was to improve a forest cover mapping methodology developed during the third 

phase of the Kyoto and Carbon Initiative (KC) Phase 3, and prepare it for up-scaling (Estomata, 2014a-b). This was 

part of the project “Reducing emissions from deforestation and forest degradation” (REDD) (GIZ, n.d.-a; DENR-

FMB, 2016b). Under the KC Phase 4, the Earth Observation Research Center (EORC) of the Japan Aerospace 

Exploration Agency (JAXA) provided the ALOS-1/2 PALSAR-1/2 images (JAXA-EORC, n.d.) that were used to 

map forest cover and change in the three study sites of the National REDD+ System Philippines project (GIZ, n.d.-

b). 

 

A robust and replicable forest cover and change methodology will be valuable to the Philippines in order to contribute 

to two Cancun Agreements prerequisites: 1) the Forest Reference Emission Level and/or Forest Reference Level 

(FREL/FRL), and 2) the National Forest Monitoring System (NFMS) (UNFCCC, 2008). An NFMS concept note has 

been prepared for the Philippines and discusses data, methods and services needed to operationalize national level 

forest monitoring and reporting of REDD+ activities (Seifert-Granzin, 2015). According to UNFCCC (2009, 

Decision 4/CP.15), developing countries should utilize both remote sensing and ground-based forest carbon inventory 

to calculate forest-related greenhouse gas (GHG) emissions and removals and to identify changes in forest carbon 

stocks and forest areas. 

 

1.2 Study Area 

 

To represent the three regional areas of the Philippines, municipalities in the province of Albay in Luzon, Eastern 

Samar in Visayas and Davao Oriental in Mindanao were selected as study sites (Seifert-Granzin, 2014; DENR-FMB, 

2016a). Table 1 provides the total land area of the provinces and the municipalities selected as study sites. Figure 1 
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shows the location of the study sites in the Philippines relative to the other South East Asian countries. 

 

 

 

Table 1, Total Land Area Information Of The  

Three Study Sites  

 
     Province 

Area (km2) 
Albay 

Eastern 

Samar 

Davao 

Oriental 

Province  2,575.77 4,660.47 5,679.64 

REDD+ site 498.09 799.03 1,278.28 

 

 

 
Figure 1. REDD+ study sites © Open Street Map, ESRI 

2. DATA 

 

2.1 Satellite Data 

 

The satellite data used in this work was the radar data acquired by JAXA’s PALSAR-1/2 sensors on board the satellite 

ALOS-1/2. The European Space Agency’s Sentinel C-band data were not used because a baseline forest cover map for 

2010 was needed in this research, and ESA’s satellite was launched only in 2014 (ESA, n.d.-a). The 25-meter slope-

corrected mosaic products from EORC were utilized in this research instead of the standard products so that the data 

used in this research is freely available. 

 

The Philippines is covered by 93 25-meter mosaic scenes (longitude: 116–126 East, latitude: 5–21 North) and each 

study site is covered by one mosaic scene (1x1 degree tile). Figure 2 shows the mosaic scenes covering majority of the 

province of Albay (Figure 2a), the mosaic scenes partly covering the provinces of Eastern Samar (Figure 2b) and Davao 

Oriental (Figure 2c). The acquisition dates of the radar images from 2007 were between June to July, for 2010 between 

July to September and in 2015 between June to October.  

 

 
Figure 2 (a-c) The 2015 ALOS PALSAR HV Mosaic Scene (© JAXA) Covering The Study Site In The Provinces Of Albay 

[Scene ID: N14 E123] (a), Eastern Samar [Scene ID: 12 E125] (b) And Davao Oriental [Scene ID: N08 E126] (c). 

 

2.2 Secondary Data 

 

Secondary data used for this research were the satellite images from the Landsat archive, data from Google Earth (GE), 

2010 land cover (LC) map of the Philippines from the National Mapping and Resource Information Authority 

(NAMRIA) and field data from the Forest Resources Assessment (FRA) of the National REDD+ System Philippines 

project (Lennertz, 2016a-b). These additional data were needed for the following purposes: 

1) Landsat data were used as reference images to georeference all available radar data, 

2) 2010 LC Maps were utilized to generate a sampling design for the three study sites, 

3) Field data from the FRA were used as forest samples for the analysis, and 

4) Google Earth images were used to verify the actual land cover as compared to the 2010 LC Maps from 

NAMRIA and the field data from the FRA. 

The 2015 land cover map of the Philippines, also generated by NAMRIA, was not yet available during this research. 

 

a b c 
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Landsat 

 

The Landsat datasets were downloaded from the United States Geological Survey’s (USGS) Earth Explorer web tool 

(USGS, n.d.). The path and row information of the Landsat data downloaded for each site were as follows:  

Albay (114, 051), Davao Oriental (111, 055) and Eastern Samar (113, 052). 

 

Land Cover Map 

 

NAMRIA generated the 2010 LC map of the Philippines, which initially had 21 land cover classes aggregated into  

14 classes: closed forest, open forest, shrubs, fallow, mangrove forest, marshland/swamp, fishpond, inland water, 

wooded grassland, grassland, annual and perennial crop, built up, and open/barren land. 116 ALOS Advanced Visible 

and Near Infrared Radiometer type 2 (AVNIR-2) scenes, 40 Satellite Pour l'Observation de la Terre (SPOT) 5 scenes, 

and 29 Landsat-7 scenes were visually interpreted to generate the land cover map. According to NAMRIA, ground 

validation was implemented to assess the accuracy of the LC map (Santos et al., 2014). 

 

Forest Resources Assessment 

 

A forest resources assessment was conducted under the REDD+ project by the Deutsche Forstservice (DfS) GmbH. The 

reports contain the methodology of the FRA (Lennertz et al., 2017) and the results of the FRA in Davao Oriental 

(Lennertz, 2016a) and Eastern Samar (Lennertz, 2016b). 120 Sampling Units (SUs) were available for Eastern Samar 

while 81 SUs were available for Davao Oriental. The configuration of the SUs implemented on the field are discussed 

in the FRA report (Lennertz et al., 2017). A lot of information is contained in the FRAs but for this research, only the 

location of the sampling units and its land cover data were utilized. All plots were also compared with Google Earth 

images to check consistency and identify recent land cover changes. 

 

3. METHODS 

 

3.1 KC Phase 3 Methodology 

 

ALOS PALSAR 25-meter mosaic data from JAXA were used for the KC Phase 3 methodology. A big portion of the 

processing required the commercial image processing software Environment for Visualizing Images (ENVI) (Estomata, 

2014a-b). The study site was Leyte Island and this required mosaicking of 6 scenes then georeferencing them to a 

Landsat image. Other pre-processing was implemented such as land/sea masking, elimination of radar effects and 

speckle filtering using a 3x3 Lee filter. HH and HV bands were converted into radar-cross section values and 5 additional 

indices/ratios were calculated. Google Earth was the source of training and accuracy assessment samples, that had to be 

at least 4 hectares in area. A sampling scheme and design could not be employed because this depended heavily on the 

availability of Google Earth images. Since the goal of the research work in KC 3 was also to separate coconut palm from 

forest areas, the aim was to classify 3 classes – forest, non-forest and coconut palm. Three supervised classification 

algorithms were tested, and the Neural Network classification achieved the best results for the post-classified 2007 and 

2010 forest cover maps of Leyte Island. Lastly, the 2007 and 2010 maps were used to detect changes in land cover 

classes through a post-classification change detection. The final change map was not assessed for its accuracy, while the 

forest cover map was assessed, and an error matrix was calculated.  

 

3.2 KC Phase 4 methodology 

 

The KC Phase 4 methodology follows the same approach implemented during KC Phase 3, but with some major 

modifications to improve the results of the analysis and incorporate advances in techniques for data pre-processing, 

classification and accuracy assessment based on the Methods and Guidance (MGD) (GFOI, 2016; GOFC-GOLD, 

2016). Some of the major differences were the following:  

 

1) a multi-temporal speckle filtering (MTSF) technique was applied;  

2) a sampling scheme in selecting training and accuracy assessment samples was used;  

3) the classification algorithm was tested;  

4) the application of an unbiased area estimation; and  

5) the direct classification for change analysis. 

 

3.2.1 Data preparation and pre-processing 

 

The mosaic images were downloaded from the JAXA-EORC website (JAXA, n.d.) as compressed folders (‘.tar.gz’). 

Each study site was covered by one radar mosaic tile, therefore tile mosaicking was not necessary. The data preparation 
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and pre-processing, excluding the speckle filtering and image registration, was automated using Python scripts and 

RSGISLib (Bunting et al., 2014). 

 
Multi-Temporal Speckle Filtering 

 

Multi-temporal SAR speckle filtering produces speckle filtered images with minimal radiometric accuracy loss and 

spatial resolution (Quegan et al., 2000 and 2001; Trouvé et al., 2003). For the process to be successful, input data/images 

must be perfectly georeferenced/geocoded, which was ensured for all the radar data used in this study. Images for the 

same area, taken at different dates were needed for the process and JAXA’s L-band data provides images from 1996, 

2007-2010 and 2015-2016. The process was implemented using the Sentinel Application Platform (SNAP) tool from 

the European Space Agency (ESA, n.d.-b).  

 

Radar cross-section and additional ratio calculations 

 

Digital Number (DN) amplitude values of the polarization bands (HH and HV) of the ALOS PALSAR data were 

converted to decibel (dB) values through the radar cross-section calculation and as provided by JAXA, the calibration 

factor (CF) for both ALOS-1/2 PALSAR-1/2 is -83.0 dB (JAXA-EORC, 2012; Rosenqvist, 2016). Additional 

ratios/indices were calculated from the original HH and HV bands as it was observed to aid in improving the class 

separability in the previous study (Estomata, 2014a-b) and was also expected to do the same for this study. It was 

observed in this study that the Normalized Difference Index (NDI), also known as the forest degradation index (RFDI) 

(Almeida-Filho et al., 2010), provided additional separability of classes compared with the NL ratio of Li et al. (2012). 

 

Mask Band 

 

The radar effects mask that accompanied the polarization bands were utilized to mask out pixels of the polarization 

bands that had radar effects (Rosenqvist, 2016). 

 

Image to Image Registration 

 

All features on the radar mosaic datasets geocoded by JAXA had an offset of 100 meters compared with same features 

found on Landsat images. Therefore, the pre-processed radar mosaic data had to be georeferenced to the respective 30-

meter Landsat data. At least 10 well-distributed ground control points (GCPs) were selected for each site, and a root 

mean square error (RMSE) of less than 0.45 was achieved for the radar datasets of Albay and at least 0.35 for the radar 

images of Davao Oriental and Easter Samar. 

 

3.2.2 Sampling Scheme and Selection 

 
Classes to be sampled 

 

The 14 classes of the 2010 LC map of NAMRIA were aggregated into the 6 Intergovernmental Panel on Climate Change 

(IPCC) classes (IPCC, 2003; Santos, 2014). An additional class of “coconut palm” was also included, to assist with 

separately classifying coconut palm and forest areas. Since the class “other land” was not found in all sites, only 6 classes 

had to be identified namely forestland, wetland, grassland, cropland, settlements and coconut palm. A sampling scheme 

was implemented, and all samples taken from the land cover map were cross-checked on Google Earth to check for 

consistency. The normalized Jeffreys-Matusita distance/ROI separability of coconut palm, cropland and grassland were 

very low, therefore the classes were aggregated into a single “non-forest” class (Richards et al., 2006). The thresholds 

for the decision tree classifier were then developed to identify only four classes – forestland, wetland, non-forest and 

settlements. After the images were classified, the classes were aggregated into forest and non-forest. 

 

Forest training samples (from FRA) 

 

The samples of “forestland” from the 2010 NAMRIA LC map for Davao Oriental and Eastern Samar were replaced by 

the more updated (~2014-2016) forest cover information from the FRA. 50 plots were used for training, and the rest 

were used for accuracy assessment. The FRA plots were also cross-checked with Google Earth as the fieldwork was 

conducted between December 2014 and March 2016, which differed from acquisition dates of the 2015 PALSAR images 

(July and October 2015). Google Earth did not have any available images for the forests of Eastern Samar. Therefore, 

the 50 training samples from the FRA of Eastern Samar could not be cross-checked and were rather assumed to be 

correct and consistent with the reality on the ground. However, Google Earth images were abundant for Davao Oriental 

and the FRA samples were checked for consistency. Out of the 81 FRA samples, only 61 were consistent with the images 

in Google Earth. The training samples for Davao Oriental were expanded and composed of 6 to 9 PALSAR pixels that 

corresponded to the location of the FRA samples. 
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Sampling for Accuracy Assessment 

 

Cochran’s (1977) equation for a stratified random sampling was used to get the total sample size for the accuracy 

assessment. Olofsson’s (2014) technique was also implemented to obtain information on the confidence 

interval/uncertainties of estimates and for this research the following assumptions were provided for all the forest cover 

maps: 1) there will be 20 errors of omission of forest in non-forest per 100 units, 2) user’s accuracy for forest will be 

90%; and 3) the target standard error for the forest estimate is 2.5% (at 95% confidence interval (CI)). The total number 

of samples varied depending on the area classified as forest and non-forest in each of the study sites. It required around 

230 samples for Albay, 200 samples for Davao Oriental and 170 for Eastern Samar. The major limitations to achieve 

the minimum number of forest samples were: a) the limited number of FRA data left for Davao Oriental and Eastern 

Samar because other FRA data were used as training samples; and b) limited availability of satellite images and/or aerial 

photos that clearly showed forest areas in Albay and Eastern Samar. 

 

Accuracy Assessment Samples 

 

The accuracy assessment samples for the forest cover maps were simplified to two classes: forest and non-forest where 

the latter was composed of cropland, coconut palm, grassland, settlement and wetland areas. At least 50 forest samples 

and 130 non-forests samples were obtained for Albay and used for accuracy assessment. Due to the abundance of Google 

Earth data in non-forest areas, 130 samples were collected for Davao Oriental and more than 200 were available for 

Eastern Samar. No Google Earth images were available for the forests of Easter Samar, therefore the 77 accuracy 

assessment samples from the FRA could not be verified using Google Earth and were instead assumed to be correct.  

50 of the 61 FRA samples in Davao Oriental, that were consistent with Google Earth, were used to train the decision 

tree classifier. This leaves only 11 unused samples for accuracy assessment of the forest cover maps for Davao Oriental. 

To obtain more samples for accuracy assessment based on the FRA, 42 of the 50 samples used for training were 

expanded from 6-9 PALSAR pixels to 81 PALSAR pixels. The training samples of forest cover covered 28 hectares of 

forest while the accuracy assessment samples covered 125 hectares. 

 

3.2.3 Threshold Identification 

 
Severe under estimation of forests was observed when the thresholds for PALSAR-1 images were used to classify 

PALSAR-2 images, therefore two sets of thresholds were identified. A script that utilizes the “tree” package of the R 

statistical software used zonal statistics to automatically calculate the thresholds for the decision trees (Breiman et al., 

1984; Ripley, 2015; R Core Team, 2015). 

 

3.2.4 Decision Tree Classification 

 
Knowledge-based decision tree classifiers have been used successfully to classify remote sensing data (Michaelsen et 

al., 1994; Reiche et al., 2013) and have outperformed other supervised classification algorithms and other linear 

discriminant function classifiers (Friedl et al., 1997). The classifier does not heavily rely on the distribution of input data 

(Friedl et al., 1997), which is the case in this study, where some training classes had limited samples available. The 

classifier is also able to specify clear rules that are required to distinguish classes (Simard et al., 2000). A multi-level 

hierarchy classification was implemented such that each pixel was initially classified as wetland/flooded crop or land. 

Pixels classified as land are then further disaggregated as settlement/bare soil or vegetation and the vegetation pixels are 

further identified as forest or non-forest (Estomata, 2018a). Post-classification steps were implemented until only two 

classes were left – forest and non-forest, excluding all radar-effects and isolated pixels. 

 
3.2.5 Accuracy Assessment and Unbiased Area Estimation 

 
As recommended by the MGD (GFOI, 2016; GOFC-GOLD, 2016), unbiased area estimation was implemented, and 

the process used was based on Olofsson et al. (2013 and 2014). Figures in the error matrices and the areas of each class, 

were used in the unbiased area estimation to obtain error-adjusted estimates of classes, with uncertainties at 95% CI. 

 
3.2.6 Direct Classification of Change 

 
Google Earth had limited data available for year 2007 for all three sites. Therefore, the focus of the direct classification 

was for the years 2010 and 2015. The backscatter values of each band (DN) of the 2015 radar images are subtracted 

from the respective bands of the 2010 radar images. This is referred to here as “difference change index” (DCI) (Reiche 

et al., 2013). 
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Deforestation Samples 

 

Deforestation samples were identified from 2010 and 2015 Google Earth images. The images used ideally matched the 

acquisition dates of the radar images used (JAXA-EORC, 2012). Davao Oriental had sufficient Google Earth images 

that matched the acquisition dates of the radar imageries in both 2010 and 2015. Due to this, deforestation sample 

collection and analysis were only carried out for Davao Oriental. After a deforestation sample was identified from 

Google Earth, it was compared to the DCI image for the HV band (HV-DCI). A sample was at least 1 PALSAR pixel 

and the largest was 21 pixels. For the samples of the stable forests, the FRA data were used.  

 

Analysis for the forest cover change classification and post-classification 

 

To directly classify forest cover change on the radar images of Davao Oriental, samples of deforestation and stable 

forests were analysed through separability and zonal statistics. The acquisition dates of the radar images of Davao 

Oriental matched some of the images in Google Earth but finding enough deforestation samples to improve its 

separability from the stable forest class was difficult. In this study, the separability of the two classes for HV-DCI was 

only 1.45, while in Reiche et al.’s work (2013), they were able to achieve 1.98, which could be because they used the 

standard product instead of the mosaic dataset. Reiche et al. (2013) was able to identify a threshold of 2.2 dB, while in 

this study, the threshold for HV-DCI was 2.0 dB. This means that all change pixels with values greater than 2.0 dB were 

classified as deforestation, otherwise, as stable forests. To ensure that only deforestation within the forested areas of 

2010 was accounted for in the analysis, post-classification processes were carried out. 

 
3.2.7 Accuracy Assessment and Unbiased Area Estimation 

 

The change maps had three classes: stable forest, non-forest and deforestation. The following assumptions (Olofsson et 

al., 2014) were provided for all change maps to determine the required total sample size for accuracy assessment:  

1) there will be 1 error of omission of deforestation in non-forest and stable forest classes per 100 units, 2) user’s accuracy 

for deforestation will be 80%; and 3) the target standard error for the deforestation estimate is 1% (at 95% CI). If 

deforestation samples are available for accuracy assessment, an error matrix and UAE may be applied on the change 

maps derived. Since deforestation samples were available for Davao Oriental, accuracy assessment and UAE could be 

implemented for the change maps of this study site. 

 
4. RESULTS AND DISCUSSION 

 

4.1 Forest Cover Maps 

 
Table 2 provides the computed forest areas based on the forest cover maps (second column) and the corrected or 

‘unbiased forest areas’ (third column) within a 95% CI. The fourth column shows the difference of the computed 

forest areas to the unbiased forest areas and shows that there is high over estimation of forest areas for the maps of 

Albay and Easter Samar (difference of more than 15%), while for the maps of Davao Oriental, the difference was 

below 4%. 

Table 2, Results For Municipalities Of The Three Study Sites 
 

Study Area 

   Year 

Computed Forest  

   Area (ha) [A] 

Unbiased Forest Area  

    (ha) [B] ± 95% CI 

Difference (%)  

    [(A-B)/B] 

 

   2007  8,608 11,149 ± 12% 23 

   2010  16,076 12,188 ± 8% 32 

   2015  14,326 11,565 ± 8% 24 

 

   2007  63,696 55,271 ± 2% 15 

   2010  64,898 55,149 ± 2% 18 

   2015  65,869 52,522 ± 2% 25 

 

   2007  64,243 64,808 ± 1% 0.87 

   2010  69,020 66,516 ± 1% 4 

   2015 62,587 64,840 ± 2% 3 

 

The forest area based on the maps of Albay had an unrealistic trend of doubling in area from 2007 to 2010. The 

unbiased estimates provide a more realistic trend of forest areas of 11,200 ha in 2007, an increase by 1,000 ha in 2010 

and then back to 11,600 ha in 2015. The forest cover of the map of Eastern Samar was initially increasing from  

63,700 ha to 65,900 ha. A consistent decrease in forest cover was observed after UAE with forests covering an area 

of 55,300 ha in 2007 and decreasing to 52,500 ha by 2015. The forest area estimates had 2% uncertainties. The map 
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for Davao Oriental reflected corrected forest area estimates with 1-2% uncertainty. The forest area started at  

64,800 ha in 2007, increase by 1,700 ha in 2010 and then back to 64,800 ha in 2015. 

 

4.2 Accuracy of the Forest Cover Maps 

 
The measures of accuracies (overall, producer’s and user’s accuracies) for the forest cover maps of Davao Oriental 

were observed to be better than the maps for the other two study areas (Table 3). This suggests that the thresholds 

used for the decision tree classifiers for both ALOS-1/2 PALSAR-1/2 worked better for the radar images of Davao 

Oriental than for Eastern Samar and Albay. The UAE procedure also computed unbiased overall and producer’s 

accuracies for all classes. Table 3 shows the originally calculated accuracies followed by the unbiased accuracies. 

The user’s accuracy did not change despite applying UAE. 
 

Table 3, Measures Of Accuracies Of The Study Areas For Each Year 

 

Study Area 

and Year 

Classification Map Forest Class Non-forest Class 

Overall Accuracy (%) Producer’s Accuracy (%) User’s 
Accuracy 

(%) 

Producer’s Accuracy (%) User’s 
Accuracy 

(%) 
Original 

    [A] 

Unbiased  

     [B] 

Difference  

   [B-A] 

Original  

    [C] 

Unbiased  

     [D] 

Difference  

   [D-C] 

Original  

     [E] 

Unbiased  

     [F] 

Difference  

    [F-E] 

Albay 

2007 86.37 87.43 1.06 70.66 60.74 -9.92 78.67 92.31 95.20 2.89 89.28 

2010 89.98 91.09 1.11 98.20 97.88 -0.32 74.21 86.88 88.86 1.98 99.22 

2015 90.97 92.29 1.32 96.41 95.42 -0.99 77.03 88.91 91.33 2.42 98.50 

Eastern 

Samar 

2007 89.97 87.80 -2.17 96.65 98.83 2.18 85.76 82.95 62.73 -20.22 95.95 

2010 89.74 86.83 -2.91 98.02 99.34 1.32 84.41 81.07 58.64 -22.43 97.51 

2015 86.35 82.71 -3.64 98.94 99.62 0.68 79.43 73.19 49.90 -23.29 98.50 

Davao 

Oriental 

2007 95.04 95.17 0.13 96.75 96.57 -0.18 93.88 93.27 93.80 0.53 96.52 

2010 93.83 93.93 0.10 98.95 98.90 -0.05 89.93 88.53 88.98 0.45 98.79 

2015 95.19 95.35 0.16 96.08 95.77 -0.31 94.82 94.26 94.95 0.69 95.88 

 
Table 4, Accuracy Measures Of Forest Cover Classifications From Various Studies In The Philippines 

 

Province Albay 
Davao 

Oriental 

Eastern 

Samar 

Southern 

Leyte 
Sibuyan Palawan Southern Leyte 

Dataset used ALOS PALSAR 25-meter Mosaic Data FBD a PLR b 

Classification 

method 
Decision Tree 

Neural 

Network 

Support Vector Machine 

(SVM) 
Wishart SVM 

   2007 Overall  

  Accuracy (%) 
 95.04 89.97 83.96 90.70 87.28   

      PA c Forest 

      Non-forest 

      Coconut palm 

 96.75 

93.27 

- 

96.65 

82.95 

- 

91.83 

87.17 

72.71 

99.54 

67.07 

- 

96.77 

76.79 

- 

  

   2010 Overall  

   Accuracy (%) 
86.37 93.83 89.74 89.45 89.33 91.60 70.0 86.0 

      PA c Forest 

      Non-forest 

      Coconut palm 

      Built-up 

      Agriculture 

      Grassland 

      Water 

98.20 

86.88 

98.95 

88.53 

- 

98.02 

81.07 

90.98 

89.32 

88.04 

94.95 

74.39 

96.83 

85.71 

61.0 

- 

62.7 

85.3 

82.6 

40.0 

86.1 

84.3 

- 

79.1 

95.8 

82.5 

76.8 

98.9 
a ALOS PALSAR Level 1.1 Fine Beam Dual Mode (HH & HV) 
b ALOS PALSAR Level 1.1 Polarimetric mode (HH, HV, VH, VV) 
c Producer’s Accuracy 

 

The forest cover maps of Albay achieved unbiased overall accuracies of at least 90%, except for the 2007 map. The 

unbiased producer’s accuracies of the forest class in the 2010 and 2015 maps were at least 95% while for 2007, it 

was only 60%. Again, this could be due to the observed “diagonal lines” in the 2007 ALOS PALSAR 25-meter 

mosaic image of Albay. Although the forest class’ unbiased producer’s accuracies were relatively high, the user’s 

accuracies were only around 75%, which suggests that the class has been ‘over-mapped’. This also means that a high 

error of commission was achieved (Rossiter, 2014). 
 

The overall accuracies of the forest cover maps of Easter Samar decreased by 2-4% after UAE was applied. The non-

forest class achieved low unbiased producer’s accuracies (50-60%), which means that a large area of non-forest on 

ground was classified as forest on the map.  
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The unbiased overall accuracy of the 2015 maps were as follows: 82% for Easter Samar, 92% for Albay and 95% for 

Davao Oriental. And only the forest cover maps of Davao Oriental achieved producer’s and user’s accuracies for both 

forest and non-forest classes of at least 89%.  

 

Various studies have applied different forest cover classification methods using ALOS PALSAR data in the 

Philippines (Estomata, 2014a-b; De Alban, et al., 2015; Monzon, et al., 2015; Tumaneng et al., 2015). Table 4 shows 

the performance of these methods and, if only the results of the 2010 map for Davao Oriental (complete error matrices 

in Estomata, 2018a) are compared to the results of the 2010 map of Southern Leyte (mosaic data) and Palawan, it 

suggests that the methodology applied in this work may slightly improve the results of the forest cover classification 

using ALOS PALSAR. The last two columns of Table 4 show how Level 1.1 FBD and PLR ALOS PALSAR data 

can perform if more classes need to be identified (Monzon et al., 2015). 

 

4.3 Forest Cover Change Map 

 
Direct classification of change for all the three sites was implemented using decision tree classification. Table 5 shows 

the gross deforestation as calculated from the maps (column 2) which does not consider forest gain through reforestation, 

afforestation or any conversion of non-forest areas to forest areas. Since Davao Oriental had accuracy assessment 

samples for the deforestation class, UAE was implemented for this site. An unbiased area estimate for gross deforestation 

(column 3) for Davao Oriental is provided in the table. 
 

Table 5, Gross Deforestation Analysis Results Based On Direct Classification And Net Deforestation Results Based 

On Unbiased Area Estimates Of The Forest Cover Maps 

 

Study Area 

(2010–2015) 

Gross Deforestation (ha) Difference Net Deforestation 

Original Unbiased Estimate ha % Original 

(ha) 

Adjusted Net Deforestation 

(ha) ± Uncertainty (%) [A] [B] ± 95% CI [A-B] [(A-B)/B] 

Albay 3,350 - - - 1,750 623 ± 16% 

Eastern Samar 5,650 - - - -971 2,626 ± 5% 

Davao Oriental 7,994 6,451 ± 769 (12%) 1,543 24 6,433 1,677 ± 3% 

 

Change cannot be directly estimated for post-classification change analysis (GFOI, 2013). Rather, change is calculated 

by getting the difference between the forest cover estimated for two dates. This change is the Net Deforestation and is 

shown in last 2 columns of Table 5. The last column shows the adjusted net deforestation, which was calculated from 

the UAE of the 2010 and 2015 forest cover maps. This procedure requires a separate accuracy assessment to consider 

errors of post-classification change analysis (GFOI, 2016). This accuracy assessment was not done in this study because 

the focus of the work was to develop a direct change analysis methodology. The uncertainties in the last column were 

calculated by adding the uncertainties of the estimates of each year and could vary if the techniques of McRoberts (2014) 

are applied. Net deforestation considers both change from forest to non-forest and vice versa. 

 
4.4 Accuracy of the Change Maps 

 
Table 6, Measures Of Accuracy Of The Forest Cover Change Analysis Of Davao Oriental 

 
Measures of Accuracies Non-forest Stable forest Deforestation 

Original (%) 

OAa [A] 88.49 

PA b [B] 88.49 91.50 63.76 

UA c 96.54 92.15 44.65 

Unbiased (%) 

OAa [C] 91.12 

PA b [D] 94.23 91.93 55.33 

UA c 96.54 92.15 44.65 

Difference (%) 
OA a [A-C]  

PA b [B-D] 

 

5.74 

-2.63 

0.43 

 

-8.43 
a Overall accuracy, b Producer’s accuracy, c User’s accuracy 

 

The forest cover change map for Davao Oriental was assessed for its accuracy and the results are reflected in Table 6. 

The original and unbiased accuracy measures are shown in the table and the deforestation class achieves very low 

accuracies. The area of deforestation was calculated with an uncertainty of 11.28%, which is even less than the most 

uncertain forest cover map in this report, the 2007 map of Albay with 10% uncertainty. 

 

Several studies have also focused on mapping forest cover change in the Philippines using ALOS PALSAR data 

(Estomata, 2014a-b; Tumaneng et al., 2015; De Alban et al., 2019), as well as mangrove changes (Monzon et al., 2019). 

Most, if not all, of the existing research applied post-classification change detection and did not apply accuracy 
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assessment due to the unavailability of historical datasets that could provide information on change from forest to non-

forest from 2007 to 2010. MGD version 2 has elaborated how to assess the accuracy of post-classified change maps 

(GFOI, 2016; GOFC-GOLD, 2016). 

 
5. CONCLUSION 

 

The radar images of Davao Oriental resulted in a fairly accurate classification of forest using the decision tree classification 

thresholds. However, better thresholds would need to be identified for Eastern Samar and Albay. This effectivity of the 

thresholds was reinforced by a supplementary analysis (Estomata, 2018b) where high-resolution optical data 

(WorldView-2) for an area of Easter Samar (41.87 km2) and Albay (40.13 km2) were visually interpreted and affirmed 

that forest cover maps of Eastern Samar and Albay had more forest mapped than in reality. The radar-based forest cover 

maps showed 15-32% more forest areas compared to the visually interpreted maps. To compensate for the limitation of 

the classifier, additional procedure of unbiased area estimation provides better forest area estimates with uncertainties at 

95% CI of below 10%. The area of forests as calculated from the maps differed from the unbiased forest area estimate 

with a range of 1 to 32%. Their accuracies also differed by 23% for the non-forest class, 2% for the forest class (excluding 

Albay 2007) and 3.64% for the overall accuracy. This further supports that the decision tree classification may not 

necessarily yield accurate results for all study sites. The results for the change classification show that better thresholds 

should be identified. Deforestation samples must be identified using high resolution data that match the acquisition dates 

of the radar images used for the change analysis. A corrected estimate of deforestation with uncertainties was calculated 

for Davao Oriental through UAE. 

 

A country-level analysis is achievable because the radar data used in this research are freely available for the entire 

Philippines and the image processing used open source software only (RSGISLib, SNAP Google Earth and QGIS). 

Obtaining better thresholds that would effectively and correctly estimate forest at the national level may be quite 

challenging, therefore the new classifiers – Random Forest and Extra Trees Classifier of RSGISLib may be explored 

instead. These new classifiers can achieve comparable results to national level forest cover maps (Devaney et al., 2015) 

and was tested in the first part of this report (De Alban et al., 2019). Countries with limited resources have been given 

the opportunity to map their forests through free wall-to-wall coverage of L-Band SAR. FREL/FRL and the NFMS, two 

prerequisites under the Cancun Agreements, are achievable through forest cover and change information derived from 

analysis and classification of PALSAR-1/2 data, and at the same time contribute to the achievement of the K&C 

objectives. 

 

6. ACKNOWLEDGEMENT 

 

This work has been undertaken in collaboration with the Department of Environment and Natural Resources – Forest 

Management Bureau (DENR-FMB) under the REDD+ Project, funded by the German Federal Ministry for the 

Environment, Nature Conservation and Nuclear Safety (BMU) under the International Climate Initiative (IKI) and 

implemented through GIZ. ALOS PALSAR data were provided by JAXA-EORC and the work was undertaken within 

the framework of the JAXA Kyoto & Carbon Initiative.  

 

7. REFERENCES 

 
References from Journals: 

Almeida-Filho, R., Shimabukuro, Y.E., Rosenqvist, A. and Sánchez, G.A., 2010. “Using dual-polarized ALOS PALSAR data for detecting new 

fronts of deforestation in the Brazilian Amazônia,” International Journal of Remote Sensing, 30: 14, pp. 3735-3743 
Bunting, P., Clewley, D., Lucas, R. M. and Gillingham, S., 2014. “The Remote Sensing and GIS Software Library (RSGISLib),” Elsevier 

Computers & Geosciences 62, pp. 216-226 

Devaney, J., Barrett, B., Barrett, F., Redmond, J., O`Halloran, J., 2015. “Forest Cover Estimation in Ireland Using Radar Remote Sensing: A 
Comparative Analysis of Forest Cover Assessment Methodologies.” PLoS ONE 10(8): e0133583.  

Friedl, M.A. and Brodley, C.E., 1997. “Decision tree classification of land cover from remotely sensed data,” Remote Sensing of Environment, 

vol. 61, no. 3, pp. 399–409, Sep. 1997. 
Li, G., Lu, D., Moran, E. and Dutra, L., 2012. “A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band data for land-cover 

classification in a tropical moist region,” ELSEVIER ISPRS Journal of Photogrammetry and Remote Sensing, pp. 26-38 

McRoberts, R.E., 2014. “Post-classification approaches to estimating change in forest area using remotely sensed auxiliary data,” ELSEVIER: 
Remote Sensing of Environment 151, pp. 149-156 

Michaelsen, J., Schimel, D.S., Friedl, M.A., Davis, F.W., and Dubayah, R.C., 1994. “Regression tree analysis of satellite and terrain data to guide 

vegetation sampling and surveys,” Journal of Vegetation Science, Vol. 5, No. 5, Applications of Remote Sensing and Geographic Information 
Systems in Vegetation Science, pp. 673-686, Nov.  

Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E. and Wulder, M. A., 2014. “Good practices for estimating area and 

assessing accuracy of land change,” ELSEVIER: Remote Sensing of Environment 148, pp. 42-57 
Olofsson, P., Foody, G. M., Stehman, S. V. and Woodcock, C. E., 2013. “Making better use of accuracy data in land change studies: Estimating 

accuracy and area and quantifying uncertainty using stratified estimation,” ELSEVIER: Remote Sensing of Environment 129, pp. 122-131 

Quegan, S., and Yu, J.J., 2001. “Filtering of multichannel SAR images”. IEEE Transactions on Geoscience and Remote Sensing, 39, 2373–2379 
Quegan, S., Yu, J.J. and Le Toan, T.L., 2000. “Iterative multi- channel filtering of SAR images”. IGARSS 2000 - IEEE 2000 Geoscience and 

Remote Sensing Symposium. Honolulu, Haweii., pp. 657–659 

9



Trouvé, E., Chambenoit, Y., Classeau N. and Bolon, P., 2003. “Statistical and operational performance assessment of multitemporal SAR image 
filtering”. IEEE Transactions on, Geoscience and Remote Sensing, 41, 2519–2530 

Reiche, J., Souzax, C.M., Hoekman, D.H., Verbesselt, J., Persaud, H. and Herold, M., 2013. “Feature Level Fusion of Multi-Temporal ALOS 

PALSAR and Landsat Data for Mapping and Monitoring of Tropical Deforestation and Forest Degradation”. IEEE Journal of Selected Topics in 
Applied Earth Observations and Remote Sensing, 6, 2159-2173 

Simard, M., Saatchi, S.S. and De Grandi, G., 2000. "The use of decision tree and multiscale texture for classification of JERS-1 SAR data over 

tropical forest," in IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no. 5, pp. 2310-2321, 2000.  

 
References From Books: 

Cochran, W. G., 1977: Sampling techniques (3rd ed.), John Wiley & Sons, New York 

Richards, J.A. and Jia, X., 2006. Remote Sensing Digital Image Analysis - An Introduction 4th Edition. Springer 

 
References From Other Literature: 

Breiman, L., Friedman, J., Stone, C.J. and Olshen, R.A., 1984. Classification and Regression Trees. Taylor & Francis 

De Alban, J.D., 2017. “Evaluation of multi-year ALOS/PALSAR data for mapping and monitoring of forest cover types in the Philippines”, 
Quezon: University of the Philippines, Diliman 

De Alban, J.D., Monzon, A.K., Veridiano, R.K., Tumaneng, R., Pales, J.R. and Rico, E.L., 2015. “Forest change and biomass mapping using 

ALOS/PALSAR data in Palawan Island in support of developing a national forest monitoring and REDD+ MRV system,” in XIV World Forestry 
Congress, Durban 

De Alban, J.D., Reyes, S.R.C., Monzon, A.K.V., Parinas, M.T., Tumaneng, R.D., Lorca, R.N.M., dela Torre, D.M.G., Jasmin, C.J. and Veridiano, 

R.K., 2019. “Integrating L-Band SAR and Landsat Data for Mapping Land Cover Change in Protected Areas in the Philippines”, GIZ, Quezon 
City, Philippines, K&C Final Report - Phase 4 

Estomata, M.T., 2014a. “Technical Report - Remote Sensing Processing,” GIZ, Manila 

Estomata, M.T., 2014b. “Forest Cover classification and change detection analysis using ALOS PALSAR mosaic data to support the establishment 
of a pilot MRV system for REDD-plus on Leyte Island,” GIZ, Quezon City, Philippines, K&C Final Report - Phase 3. Available: 

https://www.eorc.jaxa.jp/ALOS/en/kyoto/phase_3/KC-Phase-3-report_NDX-140008.pdf 

Estomata, M.T., 2018a. “Forest Cover and Change Classification Using ALOS PALSAR Mosaic Data and Decision Tree Classifiers,” GIZ, Quezon 
City, Philippines 

Estomata, M.T., 2018b. “Comparison of visually interpreted high-resolution optical images and radar-based forest cover maps of Albay and Eastern 

Samar,” GIZ, Quezon City, Philippines 
GFOI, 2013. “Integrating remote-sensing and ground-based observations for estimation of emissions and removals of greenhouse gases in forests: 

Methods and Guidance from the Global Forest Observations Initiative”. Geneva: Group on Earth Observations. 

GFOI, 2016. “Integration of remote-sensing and ground-based observations for estimation of emissions and removals of greenhouse gases in 
forests: Methods and Guidance from the Global Forest Observations Initiative,” Food and Agriculture Organization, Rome. 

GOFC-GOLD, 2016. “A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and 

removals associated with deforestation, gains and losses of carbon stocks in forests remaining forests, and forestation. v.COP22-1,” GOFC-GOLD 
Land Cover Project Office, Wageningen University, The Netherlands. 

IPCC, 2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry, Kanagawa: Institute for Global Environmental Strategies  

JAXA-EORC, 2012. “ALOS/PALSAR 25m Mosaic Product Format Description,” JAXA-EORC. 
Lennertz, R., 2016a. “Methodology and Results of the 2015-2016 Forest Resources Assessment in the Selected Project Sites in Davao Oriental,” GIZ, QC 

Lennertz, R., 2016b. "Methodology and Results of the 2014-2015 Forest Resources Assessment in the Selected Project Sites in Eastern Samar," GIZ, QC 

Lennertz, R., Schade, J. and Barrios, V., 2017. “Forest Resources Assessment and Tools to Provide Information for Forest Ecosystem Management,” GIZ, QC 

Monzon, A.K., De Alban, J.D. and Veridiano, R.K., 2015. “Comparative forest cover mapping using quad and dual-polarization ALOS/PALSAR 
images in Southern Leyte in support of REDD+ MRV development,” in XIV World Forestry Congress, Durban  

Monzon, A.K, Reyes, S.R., Parinas, M.T., Veridiano, R.K., Tumaneng, R.D., dela Torre, D.M., Sanchez, P., Rocas, N.M.B. and De Alban, J. D., 

2019. “Combined use of L-band SAR and optical data for multi-temporal mapping of mangroves in the Philippines”, GIZ, Quezon City, 
Philippines, K&C Final Report - Phase 4 

R Core Team, 2015. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing 
Ripley, B., 2015. tree: Classification and Regression Trees 

Rosenqvist, A., 2016. “Interpretation Guide for ALOS PALSAR / ALOS-2 PALSAR-2 global 25 m mosaic data Version 1.1,” GFOI and CEOS 
Rossiter, D.G., 2014. “Technical Note: Statistical methods for accuracy assessment of classified thematic maps,” University of Twente (ITC), Enschede 

Santos, R., 2014. “REDD+ in the Philippines - Presentation for the 1st GFOI,” Chiang Mai 

Santos, D.R.N., Rocas, N.M.B., 2014. “REDD+ in the Philippines,” DENR-FMB and NAMRIA, Manila 
Seifert-Granzin, J., 2014. “Design of REDD+ interventions in Project sites and further development of baseline and MRV system for REDD+ in 

the Philippines,” DfS, Manila 

Seifert-Granzin, J., 2015. “The National Forest Monitoring System of the Philippines (Concept),” GIZ, Manila 
UNFCCC, 2008. “Report of the Conference of the Parties on its thirteenth session, held in Bali from 3 to 15 December 2007 – 

FCCC/CP/2007/6/Add.1, 14 March 2008; Decision 1/CP.13[BAP], paragraph 1(b)(iii),” Bali 

UNFCCC, 2009. “Report of the Conference of the Parties on its fifteenth session, held in Copenhagen from 7 to 19 December 2009 Addendum 
Part Two: Action taken by the Conference of the Parties at its fifteenth session – FCCC/CP/2009/11/Add.1, 30 March 2010: Decision 4/CP.15, 

paragraph 1(d)(i),” Copenhagen 
Tumaneng, R., Monzon, A.K., Pales, J.R. and de Alban, J.D., 2015. “Potential use of synthetic aperture radar in detecting forest degradation in 

protected areas of the Philippines: a case study of Sibuyan island,” in XIV World Forestry Congress, Durban  

 
References From Websites: [all retrieved September 09, 2019] 
DENR-FMB, 2016a: DENR-FMB, “REDD+ Philippines Project Sites,” 2016. from: http://forestry.denr.gov.ph/redd-plus-philippines/project-sites.php. 

DENR-FMB, 2016b: “REDD+ Philippines,” from: http://forestry.denr.gov.ph/redd-plus-philippines/what-is-redd-plus.php 
ESA, n.d.-a. “Introducing Sentinel-1” from: https://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-1/Introducing_Sentinel-1 

ESA, n.d.-b. SNAP from: http://step.esa.int/main/toolboxes/snap/ 

GIZ, n.d.-a. “Reducing emissions from deforestation and forest degradation (REDD)”, from: https://www.giz.de/en/worldwide/18273.html 

GIZ, n.d.-b. “National REDD-plus”, from: https://www.giz.de/en/worldwide/18259.html 
JAXA, n.d. “Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest/Non-Forest map” from: http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm 
JAXA-EORC, n.d. “Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest/Non-Forest map,” from: http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm 

USGS, n.d. “Earth Explorer” from: https://earthexplorer.usgs.gov/  

10

http://forestry.denr.gov.ph/redd-plus-philippines/project-sites.php
http://forestry.denr.gov.ph/redd-plus-philippines/project-sites.php
http://forestry.denr.gov.ph/redd-plus-philippines/what-is-redd-plus.php
http://forestry.denr.gov.ph/redd-plus-philippines/what-is-redd-plus.php
https://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-1/Introducing_Sentinel-1
https://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-1/Introducing_Sentinel-1
http://step.esa.int/main/toolboxes/snap/
http://step.esa.int/main/toolboxes/snap/
https://www.giz.de/en/worldwide/18273.html
https://www.giz.de/en/worldwide/18273.html
https://www.giz.de/en/worldwide/18259.html
https://www.giz.de/en/worldwide/18259.html
http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm
http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm
http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm
http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/



