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Abstract. The heavy-tailed properties of Modulation Transfer Function (MTF) typically introduces noise and an 

unacceptable aliasing effect in the MTF compensation (MTFC) effort for spatial image quality improvement. These 

degradative effects compromise the image’s Signal to Noise (SNR).  Consequently, users must evaluate the relative 

importance of image sharpness versus noise to their applications in deciding whether MTFC processing is 

appropriate. In this paper, we present a strategy for high-fidelity MTF compensation framework by characterizing 

the local smooth and nonlocal self-similarity properties of optical satellite images in hybrid space and frequency 

domain. To realize the objective of this work, we design regularization terms that reflect the local smoothness and 

nonlocal self-similarity properties of the image and establish a simple joint statistical model in Curvelet domain to 

combine these two properties. To make the regularization-based MTFC method tractable and robust, we employ 

multi-objective bilevel optimization approach to efficiently solve the severely ill-posed inverse problem of MTFC. 

We conduct extensive experiments to evaluate the proposed regularization-based MTFC method using synthetically 

blurred images simulated from level 2A product of IKONOS. Quantitative measurements of image quality reveal that 

the proposed method produces competitive restoration results with minimum computational complexity and exhibit 

a good convergence property. This experimental result shows that the proposed method can find a compromise 

between regularity to remove noise and preserving image fidelity.   

 

 

1. INTRODUCTION 

 

Spatial image degradation in remotely sensed imagery happens in many ways.  For remote sensing imaging, image 

acquisition occurs while orbiting the earth. During image acquisition, the imaging system causes a blurring due to 

the cumulative effects of the instrumental optics and image motion by satellites' orbit manoeuvring (Schott, 2007). 

This blurring effect can be modeled by the Point Spread Function (PSF) or by the Modulation Transfer Function 

(MTF) in the frequency domain.  Blurred images inherently have less information than sharp images, which leads to 

difficulty when performing image analysis and scene interpretation. Therefore, the MTF degradation needs to 

compensate for spatial quality improvement.  Satellite image restoration based on compensation of MTF dates to 

mid-1980s but was not commonly available as production processing option until about the year 2000 (Schowengerd, 

2007). The restoration kernel is called MTF compensation or commonly referred to as MTFC.  MTFC based on image 

filtering techniques is the most commonly adopted method by most of the optical satellites. Generally, this type of 

method involves two steps. First, The MTF is derived from the degraded image by measuring edge (Kohm, 2004; 

Roland, 2015), pulse (Helder et al. 2006; Kameche & Benmostefa, 2016), points (Helder et al. 2006) or relative target 

(Wang et al., 2014; Keller et al., 2017); second, based on the measured MTF, a filter-based method is applied for 

compensating the MTF to restore the degraded image.  Among others, Wiener filter (Mu et al., 2013), constrained 

least square filter (Oh & Choi, 2014) and regularized Inverse filter (Li et al., 2013) are the popular choice because 

they are closed-form solutions that could be solved efficiently via Fourier Transform (FT). The goal of existing MTFC 

is to partially compensate for the system response by boosting the attenuated higher spatial frequencies 

(Schowengerd, 2007).  This attempt enhances fine spatial detail but unfortunately, because of the heavy-tailed 

properties of MTF, it introduces noise and an unacceptable amount of aliasing. These effects compromise the image’s 

Signal to Noise (SNR).  Consequently, users must evaluate the relative importance of image sharpness versus noise 

to their applications in deciding whether MTFC processing is appropriate (Schott, 2007).  MTFC is an image 

restoration problem; it is an objective process where its goal is to reconstruct the original image spectrum 𝐹(𝑣, 𝜔)  
from its degraded observed version 𝐺(𝑣, 𝜔) using a priori knowledge of the degradation phenomenon 𝐻(𝑣, 𝜔)  and 

𝑁(𝑣, 𝜔).  The degradation model in the frequency domain can be described as 
𝐺(𝑣, 𝜔)  =  𝐻(𝑣, 𝜔) ∘ 𝐹(𝑣, 𝜔) + 𝑁(𝑣, 𝜔) (1) 

where v and 𝜔 are the spatial frequency coordinates, N(𝑣, 𝜔)) denote the random noise spectrum and H denotes the 

optical transfer function, which amplitude spectrum is the MTF.  The symbol ∘⃘ denotes element-wise multiplication 

operator.  
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In practice, even if we could perfectly estimate the degradation function from a blurry image, restoring a coherent 

high frequency image details can still be very difficult. Because many different pairs 𝐹(𝑣, 𝜔) and 𝐻(𝑣, 𝜔), and/or  

𝑁(𝑣, 𝜔) can give rise to the same 𝐺(𝑣, 𝜔), which make image restoration problem an ill-posed inverse problem. Thus, 

to create a well-posed problem, it is essential to incorporate prior information about the ideal image to constrain the 

restoration solutions. However, for an application like remote sensing, it is difficult to statically model the original 

image or obtain prior information about scenes never imaged before. Therefore, designing effective regularization 

terms to reflect the image priors for remotely sensed image restoration is at the core of this work.   

 

There exists of a diverse variety of optimization approaches for regularized-based image inverse problem, particularly 

for natural images (i.e. consumer photograph, in the context of this work). In fact, a large class of pixel-based 

regularization terms that built on the well-known total variation (TV) (Rudin et al. 1992) demonstrate high 

effectiveness in preserving edges and recovering smooth regions. One representative work from the literature that 

uses TV energy model as MTFC for remote sensing image is Li et al (2017).  TV regularizer utilizes local structural 

patterns with underlying assumption that images are locally smooth except at edges; therefore, they usually smear 

out image details and cannot deal well with fine structures. To take the advantage of the multi-scale property of 

images, sparsity-based regularization algorithms based on wavelet (Mallat, 1989), curvelet Candes & Donoho, 2000), 

and contourlet (Do & Vetterli, 2005) transforms are proposed.  Sparsity-based regularizers force the transform domain 

coefficients of the restored images to be sparse, hence, they generally reduce noise without adversely affecting the 

restoration of edges. In most cases, the wavelet-type filters-based methods can achieved better quality than the TV-

type based method. However, both regularization methods do not thoroughly make use of the all properties of the 

images. Recently, inspired by the success of nonlocal means (NLM) denoising filter by Buades et al. (2005) that 

exploits nonlocal self-similarity property of natural images, a series of patch-based regularization algorithms have 

emerged. Due to the utilization of self-similarity prior, this type of regularization terms has shown to produce superior 

results over the pixel-based regularizers, with sharper image edges and more image details (Zhang et al., 2014). 

However, it can be compromised with inaccurate sparse coding coefficients result, and often involves high 

computational as it is a large-scale non-convex optimization problem. The Pixel-based and patch-based regularizers 

are typically conducted in space domain. Convolution in the space domain incurs a high computational cost when 

compared with the cost of multiplication operation that is performed for the same filtering in the frequency domain. 

These two conditions are undesirable in any type of images, let alone remotely sensed image that is typically large 

and contains abundant texture with small details. On contrary, in frequency domain, owing to the fast Fourier 

transforms (FFTs), multiplications correspond to convolution operations can be accelerated which reduces 

computation burden, however, it still has its drawback. For example, the Wiener Filter. Wiener filter (Wiener, 1964) 

is the most widely used MTFC method, because it is simple, fast, and give good results in case of the relatively small 

blur. However, it is still an ill-posed problem although the MTF is known, so it gives rise to artifacts such as ringing 

and noise amplification in the restored image. Figure 1 illustrates some of the typical side effect of the restoration 

problem in spatial- and frequency-domain.  
 

 
(a) (b) (c) 

 

Figure. 1 Comparison of visual quality for image restoration in different domain. Red box denotes cropped region. (a) Original 

Image, (b) Restored image by Wiener filter (Mu et al., 2013), illustrating rise of ringing effect and noise amplification, and (c) 

Restored image by Anisotropic TV model (Pan et al., 2017), illustrating over smooth effect that created unnatural appearance. 

 

Optical satellite image is typically large; packed with details in small scale.  Hence, seeking a method that can find a 

compromise between regularity to remove noise and structure preservation, while retaining the spatial integrity in the 

restored image with minimum computation cost, is one of the most significant challenges in optical satellite image 

restoration problem. Based on the studies of previous work, two shortcomings have been discovered. First, only one 

image property used in regularization-based framework is not enough to obtain satisfying restoration results. Second, 

there is a need to design a framework for MTFC that exhibit the most appropriate compromise among computational 

complexity, reliability and robustness to noise. In this paper, we propose a framework for high-fidelity MTF 

compensation for optical satellite image restoration by characterizing both local smoothness and nonlocal self-

similarity of images in minimum computational complexity. Given the fact that non-blind deconvolution can be 

regarded as separate step in the image restoration process, therefore, we consider the stand-alone problem, in other 
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words, a non- blind MTF Compensation, where given a blurry noisy input image, a known PSF, and a sharp image 

(i.e. original image) with shared content, how can we reliably remove blur and noise to restore coherent image details?  

 

The remainder paper is organized as follows. In Section 2 we briefly describe some common characteristic from the 

perspective of image statistic and optimization approach that we employ to design our MTFC framework. Next, 

Section 3 introduces the objection functions containing regularization terms in the bilevel optimization problem and 

elaborate the details of solving optimization.  The experimental results and discussions are provided in Section 4. 

Finally, Section 5 concludes this paper and points out possible directions for further research. 

 

 

2. PROPOSED STRATEGIES AND SOLUTIONS FOR MTFC  

 

In this section, we briefly describe the strategies and solutions that we apply to design an MTFC framework to attain 

the objectives of this work. 

 

2.1. Image characteristics 

 

Given a blur and noisy image, the goal of image restoration is to reliably remove blur and noise to restore coherent 

image details. The blurred-noisy image 𝑔(𝑥, 𝑦)  corresponds to expression of Eq. (1) in the spatial domain is 

formulated as  
𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) ⊕ ℎ(𝑥, 𝑦) + 𝜂(𝑥, 𝑦) (2) 

 

where 𝑓(𝑥, 𝑦), ℎ(𝑥, 𝑦) and 𝜂(𝑥, 𝑦) represent latent image, PSF and unknown noise respectively; the symbol ⊗ 

denotes two-dimensional (2D) convolution operator; x and y are the continuous variables in x and y plane, 

respectively.  In recent years, nonlocal self-similarity characteristic revealed by natural images has possibly become 

the most significant nonlocal statistics in image processing. As explained in Sec. 1, there are series of nonlocal 

regularization term for inverse problem. While these methods have demonstrated successful results, they come at the 

price of additional complexity, often accompanied by higher computational cost, which is not favourable in our 

framework. In general, the regularization solution that copes with the ill-posed nature of image restoration can be 

described in the following minimization problem as 

min
𝑓

1

2
‖𝑓 ⊕ ℎ − 𝑔‖2

2 +  𝜆𝑃(𝑓), 
(3) 

where  
1

2
‖𝑓 ⊕ ℎ − 𝑔‖2

2 is the L2 data-fidelity term, 𝑃(𝑓) is called the regularization term denoting image prior and λ 

is the regularization parameter.  Over the years, many studies suggest that priors based on natural image statistics can 

regularize deblurring problems to yield better results. Besides, studies also shown that the marginal distributions of 

image statistic have significantly heavier tails than a Laplacian, that well modeled by a hyper-Laplacian.  The 

marginal statistics of images are usually modeled by general Gaussian distribution (GGD) (Levin et al., 2007), the 

simplified form of GGD is defined as 𝜌𝐺𝐺𝐷(𝑓)  ∝  𝑒−𝛾|∇f|𝑝
, where ∇𝑓 =  (𝜕𝑥 𝑓, 𝜕𝑦 𝑓)𝑇  is the gradient of the image f, γ 

and v are the shape parameters. The distribution 𝜌𝐺𝐺𝐷(𝑓) is a Gaussian distribution function if p = 2, and a Laplacian 

distribution function if p = 1. If 0 < p < 1, then 𝜌𝐺𝐺𝐷(𝑓) is named as hyper-Laplacian distribution. More discussion 

about the value p can be found in the paper by Krishnan & Fergus (2009). The authors have done an impressive work 

in proposing a fast deconvolution method using hyper-Laplacian priors.  Based on their works and many others 

(Cheng et al., 2019; Chang & Wu, 2015), we notice that regularization term using a hyper-Laplacian prior can obtain 

a clear image with main structures and few artifacts.  From the description of the local smoothness and nonlocal self-

similarity characteristic in image statistic, it implies that image properties can be perceived in three components, 

which comprises of smooth, texture and structure as illustrated in Figure 2. Therefore, we utilize three image priors, 

namely, the hyper-Laplacian priors, gaussian and Laplacian prior term to regularize the optimization solution in the 

proposed MTFC Framework.  In the proposed framework, the hyper-Laplacian priors is designed to constraint the 

solution in preserving the structure component of non-local self-similarity, whereas the Laplacian priors is for 

preserving the texture component of non-local self-similarity. 
 

  
(a) (b)  (c) (d) 

Figure. 2 Illustration of image properties. (a) Satellite image contains example of local smoothness as shown by circular region, 

and nonlocal self-similarity as shown by square region, (b) a cropped region with nonlocal self-similarity properties, (c)-(d) depict 

decomposition of (b) into texture and structure region, respectively. 
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2.2. Hybrid Image Restoration Model through Bilevel Programming 

 

Finding a compromise between regularity to remove noise and preserving image fidelity for natural images is 

unarguably a non-trivial problem. Hence, many approaches have been explored, which include hybrid approach. 

Some representative works in the literature are Joint Statistic Modelling (Zhang et al., 2014), Fourier-Wavelet 

Regularized Deconvolution (Neelamani et al., 2004), Hybrid TV-Hyper-Laplacian (Zhang et al., 2015) and Joint 

Non-Local Means Filter (Yang et al., 2014). These hybrid methods have demonstrated successful results. However, 

they require heavy mathematical model to carry out the task effectively, and consequently suffers from complexity 

of computation.  Considering the respective advantages and limitations of different regularized-based approaches 

discussed in Sec.1, and the merit of different image prior characteristic in different image properties. In contrast to 

the methods in literature, we develop two regularization models with different objective function to characterize the 

image properties. We optimize the two-regularization model with multi-objective bilevel programming (MBP) for 

high fidelity of MTF compensation.  To the best of our knowledge, image restoration techniques based on MBP has 

not yet received a broad attention in the literature. Only a few articles related to this class of problems in the literature 

(Tappen et al., 2007; Nikolova et al., 2015; Kunisch & Pock, 2013) were found, and the studies were mainly focusing 

at parameter learning for variational image denoising models. MBP has a few advantages as compared to the 

conventional iterative method that frequently use in image restoration technique, is that it can ease the difficulty of 

dealing with the disjunctive nature of the complementarity constraints and optimize many parameters simultaneously. 

In this study, we belief that MTF compensated image with significant improvement of signal to noise ratio can be 

achieved by incorporating the three image priors suggested in Sec. 2.1 into the ill-posed restoration problem. Solving 

it efficiently using the MBP is one of the main contributions of this work. 

 

 

3. PROPOSED MODULATION TRANSFER FUNCTION COMPENSATION FRAMEWORK 

 

In this framework, we develop two regularization model; one is used for characterizing the properties of image 

smoothness and image structure, whereas the other one is used for characterizing the properties of image texture.  

With these regularization terms, we fused the two complementary models in Curvelet domain to maximize their 

merits and minimize their weaknesses. In doing that, we can obtain a high-fidelity image that portray both local and 

nonlocal properties of image more richly, which confines the space of inverse problem solution and significantly 

improve the spatial quality of the observed image. The model for this framework is defined as 
 

𝑀𝑇𝐹𝐶3(𝐹) =  𝑀𝑇𝐹𝐶1(𝐹𝐴) +  𝑀𝑇𝐹𝐶2(𝐹𝐴`), with A' = {s ∈ S: s ∉ A}. (4) 
 

where 𝑀𝑇𝐹𝐶3(𝐹) , 𝑀𝑇𝐹𝐶1(𝐹𝐴), and  𝑀𝑇𝐹𝐶2(𝐹𝐴`) represent the Hybrid MTFC Model, regularization model that 

contains image smooth and structure, and another regularization model that contains image texture. The 𝑆 =
(𝑠0, … , 𝑠𝑁𝑗

) in which Nj is determined by  

𝑁𝑗 = [𝑙𝑜𝑔2(min(𝑚, 𝑛) − 3], (5) 

where m and n are size of F. We decouple the two regularization terms in Eq. (6) into separate steps and optimize the 

solutions with multi-objective bilevel programming (MBP) such that they become lower level problem and upper 

level problem, respectively. In the next section, we first describe the Lower level problem and follow by Upper level 

Problem. 

 

3.1. Lower Level Problem 

 

The objective function for the lower level problem (LLP) is obtain a clear image that emphasize image smoothness 

without amplified noise and image structure without unwanted image artifacts such as ringing near edges.  To achieve 

this objective function, we develop two strategies, where first we adopted a hyper-Laplacian image prior (Krishnan 

& Fergus, 2009) to make gradients in near-edge regions obey a heavy-tailed distribution to produce sharper edges; 

and to suppress noise and remove ringing artifacts. Secondly, we introduce a mask to encode edge regions and use a 

gaussian prior to eliminate noise and ringing artifacts in locally smooth regions. The combined image priors, is thus 

defined as 

𝑃(𝑓) = 𝜏1‖∇𝑓‖𝑝 ∘ 𝑀(𝑥) +  𝜏2‖∇𝑓‖2
2  ∘ (1n x m − 𝑀(𝑥)) , (6) 

 

where ∇𝑓 =  (𝜕𝑥 𝑓, 𝜕𝑦 𝑓)𝑇   is the gradient of the image f, 𝜏1 , and 𝜏2  are the weights; the symbol ∘⃘ represents the 

element-wise multiplication operator,  ‖. ‖𝑝 is the hyper-Laplacian prior; p is the parameter with 
1

2
≤ 𝑝 ≤  

4

5
 Smaller 

p leads to a smoother result. We can adjust p to get a satisfactory result. 1𝑛 x 𝑚 denotes an all-ones matrix according 

to a n x m image, and M(x) is a 2D binary mask function. The proposed prior P(f) in Eq. (6) is used as a regularization 

term to solve the objective function of LLP. Hence, the total energy of LLP is defined as  
 

 𝑀𝑇𝐹𝐶𝐿(𝑓𝐿) =  min
𝑓

‖𝑓𝐿 ⊕  ℎ − 𝑔‖2
2 +  𝑃𝐿(𝑓𝐿) (7) 
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subject to 𝑓𝐿  = 𝑎𝑟𝑔𝑚𝑖𝑛 𝜏1‖∇𝑓𝐿‖𝑝 ∘ 𝑀(𝑥) + 𝜏2‖∇𝑓𝐿‖2
2  ∘ (1𝑛𝑥𝑚 − 𝑀(𝑥)) , 𝜏1 > 0,  𝜏2 > 0 

 

To solve the non-convex function of Eq. (7), we introduce an auxiliary variable u to substitute ∇𝑓𝐿  and add another 

regularization term to Eq. (7) to penalize non-sparsity of gradient. Therefore, Eq. (7) can be rewritten as 
 

 𝑀𝑇𝐹𝐶𝐿(𝑓𝐿) =  min
𝑓𝐿

‖𝑓𝐿 ⊕  ℎ − 𝑔‖2
2 +  𝑃𝐿(𝑓𝐿) 

subject to 𝑓𝐿  = 𝑚𝑖𝑛
𝑓𝑙

𝜏1‖𝑢‖𝑝°𝑀(𝑥) +  𝜏2‖𝑢‖2
2°(1𝑛x𝑚 − 𝑀(𝑥)) + 𝜏3‖∇𝑓𝐿 − 𝑢‖2

2  , 𝜏1 > 0,  𝜏2 > 0. 
(8) 

When 𝜏3 is close to ∞, the solution of Eq. (8) converges to that of Eq. (7). With the formulation of Eq. (8), we can 

decouple the optimization problem into two sub-problem and solve them efficiently through alternatively minimizing 

(Geman & Yang, 1995) f and u independently. Accordingly, we briefly describe the following two sub-problem for 

which we call uL sub-problem and fL sub-problem. 

 

uL sub-problem: By fixing all variables except u, Eq. (8) is reduced to 
 

𝜏1‖𝑢‖𝑝°𝑀(𝑥) +  𝜏2‖𝑢‖2
2°(1𝑛𝑥𝑚 − 𝑀(𝑥)) + 𝜏3‖∇𝑓𝐿 − 𝑢‖2

2 .  (9) 
 

Thus, we can find optimal u using Newton-paphson method. The variables 𝑝, 𝜏1𝜏2 and 𝜏3 are empirically set to 2/3, 

0.001, 0.01 and 0.1, respectively.  

 

fL sub-problem: Given a fixed value of u from the previous iteration, Eq. (9) is quadratic in f. The optimal fL is thus 

become 

min
𝑓𝐿

‖𝑓𝐿ℎ − 𝑔‖2
2 + 𝜏3 ‖𝑓𝐿 − 𝑢‖2

2 . (10) 

As it is a closed-form least squares minimization problem, this allows us to find optimal f directly using FFTs based 

on Parseval’s theorem. To demonstrate the contribution of Eq. (10), we conduct an experiment as shown in Figure.3. 

From Figure 3, it can be observed visually that the proposed image priors provide structure preservation better than 

Krishnan & Fergus (2009). Another observation is that the boundary artifacts due to the periodicity property of FT 

are not visible in intermediate latent image 𝑓𝐿. 
 

 
 

Figure. 3 Effectiveness of the proposed prior, the block regions show the cropped region and their closed-up view. (a) Blurred-

noisy input (gaussian blur, σ =2), (b) intermediate latent image 𝑓𝐿 restored by Eq. (10). (c) Restored results using method by 

Krishnan & Fergus (2009). Closed-up view from the yellow box obviously shown boundary artifacts. 

 

3.2. Upper Level Problem 

 

The upper level problem (ULP) comprises two objective functions, one is to recover the fines texture of the degraded 

image spectrum G based on 𝑓𝐿̅ ∈ 𝑋𝐿(𝑓𝑈), while the other one is to produce the ultimate restoration result. Similar to 

LLP, we solve the ULP in two steps; the two steps problem is described as uU sub-problems and fU sub-problems. 

uU sub-problem: The objective function corresponds to solving the upper level problem (ULP) is defined as 
 

 𝑀𝑇𝐹𝐶𝑈(𝐹𝑈) =  
𝐻(𝑣,𝜔) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

|𝐻(𝑣,𝜔) |2  + 𝛼|𝑅(𝑣,𝜔)|2 ∘ 𝐺(𝑣, 𝜔) , subject to ‖𝑔 − 𝐻𝑓𝐿‖2  =  ‖𝜂‖2, 𝛼 > 0,  (11) 

 

where v and ω are the spatial frequency coordinate; 𝛼 is a weight, 𝑅(𝑣, 𝜔) is a Laplacian prior, which penalizes the 

PSFs that are not smooth; and 𝐻(. )̅̅ ̅̅ ̅̅  is the complex conjugate of H. Note that Eq.(11) has the same expression as the 

constrained least squares (CLS) filter defined in Li et al.(2013). The regularization term Eq. (11) has the advantages 

of convex optimization and a very low computational complexity. There is no need to design a very complex 

regularization term, since the task of restoring smooth regions and retaining the sharp edges will be accomplished by 

LLP. Nevertheless, to make Eq. (11) more tractable and robust, we introduce another prior term about the solution as  

𝑃𝑈(𝑓𝑈) = 𝜀/𝑉𝑎𝑟(𝑓𝐿), (12) 

where 𝜀 is the noise level estimation using the method by Liu et al. (2013) and 𝑉𝑎𝑟(𝑓𝐿) is the image variance of the 

estimate undegraded image (i.e. the output from LLP). The main problem of the classic CLS filter in image restoration 

is that the weights could not be estimated accurately based on the blurred noisy image. If a reference image that 

contains a much better estimate of the frequency information than the noisy image is available, then the regularization 

term could be estimated more accurately. In addition, optimization of UPP is more efficient because 𝛼 can be found 
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must faster than the classic one. With introduction of Eq. (12), the objection function and constraints of ULP in Eq. 

(11) are modified to become 
 

 𝑀𝑇𝐹𝐶𝑈(𝐹̅𝑈) =  
𝐻(𝑣,𝜔) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

|𝐻(𝑣,𝜔) |2  +  𝛼𝑃𝑈(𝑓𝐿)|𝑅(𝑣,𝜔)|2
∘ 𝐺(𝑣, 𝜔), subject to 𝑚𝑖𝑛 ‖𝑓𝐿 − 𝑓‖2

2 , 𝛼 > 0, 𝜀 − ‖𝑓𝐿 − 𝑓‖2
2 = 0,   (13) 

 

where 𝑚𝑖𝑛 ‖𝑓𝐿 − 𝑓‖2
2 denotes image fidelity of LLP.  Figure 4 and 5 presents comparison of visual image quality 

and convergence analysis between the improved CLS and classic CLS, respectively. From the closed-up views in 

Figs 4(b) and 4(c), it can be noticed that the proposed CLS produce sharper results than the classic CLS.  Whereas 

from Figure 5, It can be noted that the improved CLS converges much faster than the classical one, where it requires 

only 30 iterations as stop criterion, which is six times faster than the classic CLS. 

 

 
(a) (b) (c) 

Figure 4. Visual quality comparison of image restoration (a) Blurred-noisy input (gaussian blur, σ =2), (b) Restored results by the 

proposed improved CLS using Eq. (20), (c) Restored results by classic CLS. Note that the close-up views correspond to red box 

in (b) and (c).  
 

 
 

Figure 5. Convergence analysis for improved CLS and classic CLS 

 

fU sub-problem: The objective function corresponds to combine local and nonlocal properties of image from the 

bilevel problem, and implicitly determine the most optimal decision of this problem is defined as 
 

 𝑀𝑇𝐹𝐶𝑈(𝑓𝑈 , 𝑓𝐿  ) =  𝐶−1[⟨𝑓𝑈̅ ,𝜓𝑗`,𝑝,𝑘
𝑢 ⟩ + ⟨𝑓𝐿̅,𝜓𝑗,𝑝,𝑘

𝑙 ⟩], subject to  𝑄(𝑓𝐿) , 𝑄(𝑓𝑈) >  𝑄(𝑓𝑈̅): 𝑓𝑈̅ ∈ 𝑋𝑈 (14) 
 

where 𝐶−1denotes the inverse curvelet transform function; 𝜓𝑗,𝑝,𝑘
𝑢 is the curvelet coefficient of Latent image from ULP 

at scale j, wedge location p, and coordinates k, whereas 𝜓𝑗′,𝑝,𝑘
𝑙  is the curvelet coefficient of Latent image from LLP 

at scale j`(i.e., complement of j). For all images in 𝑓 = (𝑓𝑈, 𝑓𝐿 ) with the size of m x n pixel, we use Eq. (5) to calculate 

the number of scales and apply bandpass filtering to extract frequency coefficients of  𝑓 at each scale and filter into 

pool of subbands as follow 
 

{𝑓𝑈  ↦ ( ∆0 𝑓𝑈 ,  ∆1 𝑓𝑈 ,  ∆2 𝑓𝑈  , …  ∆𝑁𝑗 𝑓𝑈), 𝑓𝐿 ↦(𝑆0 𝑓𝐿 ,  ∆1 𝑓𝐿 ,  ∆2 𝑓𝐿 , …  ∆𝑁𝑗 𝑓𝐿)} , (15) 

 

where  ∆0…𝑁𝑗 represent the band levels, with  ∆0 being the band with lowest frequencies, and  ∆𝑁𝑗 being the band with 

the highest frequencies. Since low frequencies responsible for general appearance of image over smooth areas, 

whereas high frequencies responsible for detail.  As we select 𝑓𝐿 ↦ (∆0 𝑓𝐿 ,  ∆1 𝑓𝐿,  ∆𝑁𝑗 𝑓𝐿) to represent the smoothness 

region and structure, then the texture will be presented by 𝑓𝑈  ↦ (∆2 𝑓𝑈,  ∆3 𝑓𝑈 , … ,  ∆𝑁𝑗−1 𝑓𝑈). Thus, finally, we obtain the 

final decision of MBP as 𝑓 ↦ (∆0 𝑓𝐿,  ∆1 𝑓𝐿 , ∆2 𝑓𝑈 ,  ∆3 𝑓𝑈, … ,  ∆𝑁𝑗−1 𝑓𝑈 , ∆𝑁𝑗 𝑓𝐿), which is the ultimate restoration result. 

 

 

4. ANALYSIS AND EXPERIMENTAL RESULTS 

 

In this section, we present extensive experimental results to evaluate the performance of the proposed algorithm. The 

datasets that we used are synthetically blurred satellite images simulated from level 2A product of IKONOS, which 

is also the ground-truth data for this experiment. As the practical atmospheric PSF in remote sensing images is 

assumed to be a Gaussian-like shape, so we synthetically blurred the ground truth with Gaussian blur for six different 
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standard deviation (SD) σ of 1, 1.5, 2, 2.6, 3 and 4. Apart from blurring, we also added white additive Gaussian noise 

with zero mean and 0.5 SD to all synthetic data to test the robustness of the proposed algorithm. We compare our 

proposed algorithm with five competing methods. They comprise of an MTF-filtering based method which is the 

widely used Wiener filter, two recent representative non-blind deconvolution methods (i.e., Krishnan & Fergus 

(2009) and Pan et al. (2017)) that exploit image prior as regularization term, and two representative non-blind 

deconvolution methods (i.e., Zhang et al. (2014), Zhang et al. (2015)), which use hybrid model. We evaluate the 

competing methods from two aspects: effectiveness and efficiency. To evaluate effectiveness, we use ISNR (unit: 

dB), and the recently proposed FSIM [unitless: interval [0 1]); FSIM is known to achieve much higher consistency 

with the subjective evaluations than state-of-the-art image quality assessment metrics (Zhang et al., 2011). In addition 

to quantitative measurement, we also use visual observation for qualitative evaluation.  

 

4.1. Analysis on the effectiveness of Combined Prior in MTFC 

 

In this analysis, we collect four groups of 10 datasets with different blurring effects (i.e. σ of 1, 2, 3,4) to evaluate the 

effectiveness of the proposed combined prior in MTFC.  For each restored image f by the proposed regularization-

based MTFC method, we decompose it into subbands in curvelet domain and measure its FSIM with reference to 

ground truth.  Table 1 tabulates the average FSIM and relative SD of each subband for all datasets. From the analyses, 

it is expected that the dataset with the smallest blurring effect will produce the best image reconstruction results with 

smallest uncertainty, vice versa.  In addition, this analysis shows that the proposed combined prior can preserve 

structure effectively even in large blur condition. One key observation is that the proposed prior can attain near perfect 

FSIM score in the mid-range frequency, which indicates that it can preserve image detail effectively. Moreover, it 

can be noted that even with large gaussian blur σ =4, the proposed method is capable to recover the high frequency 

components of image up to 0.90352 FSIM value with relative SD as low as 0.006%.  The low uncertainty values of 

the reconstructed subbands tabulated in Table 1 demonstrate high reliability of the priors employed by the proposed 

method. This merit can warrant the robustness of the proposed method.  
 

Table 1 The average FSIM and relative SD of datasets in their respective subband.  
 

Subband 

Dataset 1 Dataset 2 Dataset 3 Dataset 4 
σ =1 σ =2 σ =3 σ =4 

Average 

FSIM 

Relative 

SD (%) 

Average 

FSIM 

Relative 

SD (%) 

Average 

FSIM 

Relative 

SD (%) 

Average 

FSIM 

Relative 

SD (%) 

∆0 𝑓 0.99999 0.0001 0.99967 0.0089 0.99999 0.0010 0.99864 0.0027 
∆1 𝑓 0.99998 0.0039 0.99970 0.0065 0.99992 0.0084 0.99989 0.0030 
∆2 𝑓 0.99996 0.0064 0.99029 0.0106 0.99943 0.9385 0.99189 0.0420 
∆3 𝑓 0.99998 0.0039 0.99884 0.0091 0.99928 0.0095 0.97167 0.0052 
∆4 𝑓 0.99921 0.0062 0.94080 0.0039 0.93902 0.0098 0.92584 0.0013 
∆5 𝑓 0.99229 0.0031 0.92120 0.0055 0.92091 0.0145 0.90352 0.0061 

 

Figure 6 presents examples of synthetic blurred-noisy images used in this analysis and their respective restoration 

results by the proposed regularization-based MTFC method. In Figure 6, quantitative measurements value at the left 

of the slash denotes ISNR (dB) and the right of the slash denotes FSIM.   
 

 

 
 

Figure 6. Restoration results; The top row shows blurred-noisy image with different amount of blur, whereas bottom row presents 

respective image after image restoration process. 
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4.2. Comparison with competing methods 

 

In this sub-section, we present experimental evaluations for spatial quality improvement by the proposed 

regularization-based MTFC method against five competing methods. Table 2 tabulates some of the FSIM and ISNR 

results among competing methods on the datasets.  These results are generated using the same input blurry images 

and PSF kernel, hence they are directly comparable. From Table 2, we have several observations. Firstly, the proposed 

method considerably outperforms the other methods in term of FSIM, with about 95% (i.e. 38 of 40 cases) the highest 

FSIM in all the cases. However, in term of ISNR, the proposed MTFC method is outperformed by Zhang et al. (2014), 

with the second highest ISNR in all cases.  Secondly, we observed that in the case of σ = 3 and σ = 4 on image P3 

(P3 is illustrate in second row of Figure 8(h) method by Zhang et al. (2014) that uses patch-based regularization 

method achieves better FSIM than the proposed method. This demonstrates that patch-based regularization method 

is more effective in preserving structure of images with less detail. Therefore, from this table, we conclude that the 

proposed MTFC method is comparable to the Hybrid methods, and significantly outperformed the widely used 

Wiener filter and image prior-based regularization methods, with better ISNR and FSIM results in all cases.   

 

Table 2 FSIM and ISNR comparison of various regularization method for image restoration.  
 

Gaussian blur, σ =1 

 
MTF-based 

Filtering 
Prior-based Regularization Method Hybrid / Joint Statistical Regularization Method 

Data 
Wiener Filter 

(Krishnan & 

Fergus (2009) 
(Pan et al. 2017) 

(Zhang et al., 

2015) 

(Zhang et al., 

2014) 

Proposed 

Method 

FSIM ISNR FSIM ISNR FSIM ISNR FSIM ISNR FSIM ISNR FSIM ISNR 

P1 0.99772 1.55 0.99751 3.57 0.99704 2.69 0.99652 4.31 0.99655 7.56 0.99856 6.96 

P2 0.98172 0.62 0.97974 2.40 0.97891 2.02 0.97848 3.65 0.97850 5.49 0.97859 4.26 

P3 0.98308 2.78 0.9814 2.92 0.97974 3.33 0.97941 4.89 0.97951 7.81 0.98153 5.84 

P4 0.99516 0.52 0.99754 5.05 0.99621 2.22 0.99757 5.05 0.99764 6.84 0.99861 5.65 

Gaussian blur, σ =2 

P1 0.97957 3.34 0.97936 2.66 0.97957 2.72 0.97855 2.65 0.97957 3.97 0.97961 3.57 

P2 0.98043 1.86 0.97974 1.30 0.97891 1.48 0.97848 1.85 0.97850 2.26 0.97891 2.19 

P3 0.98308 1.97 0.98140 1.32 0.97974 1.30 0.97941 1.72 0.97951 3.09 0.98051 2.90 

P4 0.98062 2.25 0.98093 2.64 0.98005 1.77 0.98100 2.64 0.98100 3.09 0.98297 2.65 

Gaussian blur, σ =3 

P1 0.93423 2.45 0.93382 2.34 0.93251 1.82 0.93415 2.44 0.93426 2.72 0.93430 2.46 

P2 0.94192 1.85 0.92645 1.85 0.94043 1.40 0.94202 1.89 0.94339 2.01 0.94596 1.91 

P3 0.92842 0.98 0.92841 0.84 0.92718 0.53 0.92828 0.80 0.92996 1.72 0.92952 1.60 

P4 0.93539 2.39 0.93075 1.55 0.93372 1.64 0.92901 1.96 0.93554 2.77 0.93594 2.43 

Gaussian blur, σ =4 

P1 0.88259 2.49 0.88287 2.48 0.86666 1.82 0.88330 2.32 0.88196 2.66 0.88227 2.51 

P2 0.86651 1.88 0.86536 1.88 0.86267 1.40 0.86295 1.76 0.86651 2.01 0.86693 1.93 

P3 0.86833 2.48 0.86823 2.42 0.86830 1.88 0.86840 2.48 0.87576 2.63 0.87409 2.54 

P4 0.88088 2.38 0.88150 2.37 0.87471 1.55 0.88112 2.38 0.88020 2.66 0.88188 2.49 

 

Figures 7 and 8 show visual quality restoration results for some of the data in Table 2. Only four examples are shown, 

and each represents restoration for a different amount of blur. Note that these examples are selected based on their 

feature density in a scene.  In figures 7, quantitative measurements value at the left of the slash denotes ISNR (dB) 

and the right of the slash denotes FSIM.  From visual observation, it is apparent that all the methods produce sharper 

image than the blurred-noisy image. From the closed-up view, we observe noise amplification in restored results by 

Wiener filter; The method by Krishnan and Fergus (2009) is good at capturing contour structures but fails in 

recovering textures and produces over-smooth effects. We observe that method (Krishnan and Fergus, 2009) can 

restore better texture than method (Pan et al., 2017), however it produces noticeable boundary artifacts. These artifacts 

can be overcome to some extend with edge tapering operations. Meanwhile, hybrid method by Zhang et al. (2015) 

can restore textures better than the method by Krishnan and Fergus (2009) and suppresses most of the noise-caused 

artifacts, however it is exhibiting a lower contrast visual quality than other methods.  Among all, the hybrid method 

by Zhang et al. (2014) produces much cleaner image with sharper edges and textures, however for large blur image, 

it tends to produce unnatural appearance (i.e. cartoon effect) on restored image as shown in Figure 7. Based on this 

experiment, we found that the proposed regularization-based MTFC method can provides accurate restoration on 

both edges and textures with almost unnoticeable ringing artifacts. It is exhibiting good visual quality, which is 

consistent with FSIM. While it may not have producing visual quality as clean as method (Zhang et al., 2014), but it 

exhibits a more natural effect than other methods, including method (Zhang et al., 2014) for large blurred image. 
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Figure 7.Visual quality comparison of image restoration in the case of blur σ =4, red box denotes cropped region (a) Original 

image, (b) Blurred-noisy image, P4 (c)-(h) restoration results by the proposed method  (2.49dB/0.88188), Wiener filter 

(2.38dB/0.88088 Krishnan & Fergus (2009)( 2.37dB/0.88150), Pan et al.(2017)(1.55dB/0.87471), Zhang et al.(2015) 

(0.80dB/0.92828), and Zhang et al.(2014)( 2.66dB/0.88020). 

 

 
Figure 87. Visual quality comparison of image restoration for P1(first row), P2 (second row) and P3 (third row) in the case of blur 

σ = 1, σ = 2, and σ =3, respectively. Red box denotes cropped region (a) Original image, (b) Blurred-noisy image, P4 (c)-(h) 

restoration results by; (c) the proposed method, (d) Wiener filter, (e) Krishnan & Fergus (2009), (f) Pan et al.(2017), (g) Zhang et 

al.(2015), and (h) Zhang et al.(2014).  

 

4.3. Algorithm Complexity and Computational Time 

 

We implemented our method in MATLAB on an Intel Core i5 CPU with 8 GB of RAM. Comparing the uL, uU, fL, fU 

sub-problems in the bilevel programming, it is obvious to conclude that the main complexity of the proposed 

algorithm comes from the uU sub-problem. However, as the primary computational task in both upper and lower level 

problem consists of FFT, therefore, overall it has a very low computational complexity.  In our implementation, for 

image of size 512×512, the bilevel optimization costs (9.47 ± 0.31) seconds. We present the computational time of 

all competing methods on the test images in Table 1. Form the table, it is obvious that Wiener Filter is the fastest 

method. Method by Krishnan and Fergus (2009) and Pan et al. (2017) come in second and third fastest, respectively. 

The proposed method being the fourth fastest. Although Zhang et al. (2014) has highest ISNR in most case, it suffers 

from huge computational times due the need for dictionary learning.  It is about 120 times slower than the proposed 

method. From the table, unlike method by Krishnan & Fergus (2009), Pan et al. (2017), Zhang et al. (2015), and 

Zhang et al. (2014), the computational complexity of the proposed method and Wiener filter are independent of the 

amount of blur. 
 

Table 3 Average run time (seconds) of different methods on images of size 512×512 . 
 

Gaussian 

blur, σ 

Wiener 

Filter 

(Krishnan & 

Fergus (2009) 

(Pan et al. 

2017) 

(Zhang et 

al., 2015) 

(Zhang et 

al., 2014) 

Proposed 

Method 

1 0.15 0.69 4.80 9.89 1016.15 9.34 

2 0.18 0.79 4.38 10.79 1065.73 9.35 

3 0.21 1.06 4.79 11.78 1103.34 9.89 

4 0.24 1.25 4.29 12.64 1254.18 9.56 
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5. CONCLUSION 

 

This paper describes a robust and efficient MTF compensation method for restoring optical satellite images with high 

fidelity using joint statistical model in Curvelet domain. In this work, we exploited the merit of image prior 

characteristic in the local smooth and nonlocal self-similarity properties of an image, to design an effective 

regularization term to solve the underdetermined inverse problem of MTFC. In particular, we show that the 

regularization-based MTFC can be reformulated as a tractable optimization problem using the MBP. To evaluate the 

performance of the proposed method, we performed extensive comparisons against leading methods in non-blind 

deconvolution, which included image quality assessment using ISNR, FSIM and computation time. The evaluation 

results show that the proposed method achieves significant performance in preserving more image details and exhibit 

good convergence property with minimum computational complexity. This indicates the proposed regularization-

based MTFC method found a compromise between solution accuracy and computational efficiency, which is can be 

used to compensate the degradation for image spatial quality improvement. The successful results of patch-based 

regularization that exploits the nonlocal self-similarity properties of image in preserving high fidelity image is 

inarguable. However, it compromises with high computational complexity. Therefore, for future work, we would like 

to study the feasibility of this regularization term in MTFC and explore ways to improve its efficiency. 
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